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Preface

Creating a real link between theory and practice was the ultimate goal of the work-study program between
Université de Bourgogne and CHU Dijon Bourgogne. The application and adaptation of statistical models to
real situations can be much more tedious than it seems at the first glance. This Master’s thesis is intended
to provide an overview of both sides from the mathematical rigor required for good statistical modeling to the
application, interpretation, and discussion of the results obtained. During my time at university, I acquired the
necessary knowledge of statistical modeling to build models properly and ensure their reliability. During my
apprenticeship, within the Service de Biostatistiques et d’Information Médicale (SBIM) at CHU Dijon Bour-
gogne, I was able to deepen my knowledge and skills, and I discovered the proposals of studies, the drafting of

articles and the delicacy of each publication..

This was achieved through a research project conducted in collaboration with the Service de Biostatistiques et
d’Information Médicale over a period of almost 8 months. The name of this project is « Analysis of factors
associated with 30-day readmission following initial hospitalization for prostate surgery » and it
will be the main focus of this Master’s thesis. As with each project proposal within the CHU Dijon Bourgogne,
the data, materials and methods used are governed by a specific proposal. This thesis will detail all these as-
pects, in the manner of a scientific publication outline, whilst adding an eccentric twist by revealing the hidden
part of the iceberg: the details of the mathematics used. This part is, I believe, the heart and essence of a trust

study, which is why it will be given great importance in this thesis.

This Master’s thesis is divided into four main parts, one of which is dedicated to presenting the context of the
project and the methodology to be adopted according to the proposal. The next one is dedicated to the statisti-
cal tools used in this research, summarizing the main mathematical principles behind each SAS procedure used,
and examples where these methods were used to better illustrate the purpose of each of them. The third part fo-
cuses on the interpretation of the results, the conclusions, a discussion and possible future perspectives to which

this study has led. Finally, the fourth and last part recapitulates all the challenges I faced throughout the study.
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Introduction to the research project



Chapter 1

Framework for the research project

The apprenticeship took place in a research unit at the Service de Biostatistiques et d’Information Médicale
(SBIM)) of the CHU Dijon Bourgogne. The subject of the present research is the analysis of factors that may
be associated with 30-day rehospitalization following initial hospitalization for prostate surgery, using the Pro-
gramme de Médicalisation des Systémes d’Information database.

The following sections introduce the CHU and PMSI hospital databases. The aim is to provide the reader with
some background on how the PMSI works and to emphasize the anonymous nature of the data used in this
study. This is followed by an introduction to the research project and its objectives.

1.1 Research department at the CHU

In France, since 2008, each hospital’s budget has depended on the medical
activity described in the [PMSI which compiles discharge summaries of
admissions. It collects data on all hospital (private or public) admissions in
France in order to better manage the financing of healthcare establishments
and organize the supply of care.

L
qhh The organization of PMSI data compilation and processing in the Médecine,
Chirurgie, Obstétrique et Odontologie (MCO)|) field is managed by the

Agence Technique de ’Information sur [’Hospitalisation (ATIH]). Prior to

AGENCE TECHNIQUE the release of (anonymized) medico-administrative data by [ATTH| the data

DE L'INFORMATION is produced and collected within each hospital, thanks to the Département

SUR L'HOSPITALISATION d’Information Médicale (DIM)), dedicated to managing the collection of
this data.

1.1.1 Service de Biostatistiques et d’Information Médicale (SBIM)

At the CHU Dijon Bourgogne, the [DIM]is headed by Pr. Catherine Quantin, and complemented by a research
unit - the Service de Biostatistiques et d’Information Médicale - whose aim is to analyze the s
healthcare offer in relation to its environment, and to carry out clinical or epidemiological research based on
Systéme National des Données de Santé data. It also participates in various medico-economic studies
(e.g. analysis of hospital stay costs). All these missions converge towards better patient care: reduction in
readmission /rehospitalization rates, lower mortality, and optimization of hospital stays. The objective is to
promote the evaluation of care.

The research project covered by this Master’s thesis took place under a research program led by the in
collaboration with the unit’s statisticians and clinicians. The ultimate goal was also to improve patient follow-
up through a better understanding of the risk factors associated with 30-day rehospitalization after prostate
surgery.

1 The [SNDS| brings together the main existing French health databases (including [PMSI| databases).



1.1.2 Introduction to PMSI data

The information collected in the context of the [PMS]|is protected by professional secrecy. An anonymous linkage
of information collections has been implemented since 2001 (DHOS-PMSI-2001 circular n°106 of February
22, 2001) thanks to Catherine Quantin. It allows following the hospitalizations of the same patient. The anony-
mous linkage is based on the creation of a unique anonymous number for each patient. The hospitalizations
of the same person can thus be identified but it is impossible to determine the identity of the person from its
chain number. In this context, and with a national perspective, activity is recorded in the form of a Résumé de
Sortie Anonymisé produced for each hospitalization (stays and sessions), in each hospital. Each
is classified, using a specific classification algorithm, into a single Groupe Homogéne de Malades . The
classification of all stays in a hospital into [GHME determines the reimbursement rate, since stays classified in
the same group have, by construction, similar resource consumption. The classification is also medical, its first
level of classification is based on medical criteria (medical procedures or notorious reason for hospitalization).

The RSA contains information on the patient and its stay, both administrative and medical. These include
the Fichier National des Etablissements de Santé Sanitaires et Sociaux number (iden-
tifying the hospital where the stay took place), Numéro d’Index (enabling the identification of stays within
the same establishment), Numéro de Séjour (temporal identifier for the stay) and Numéro Anonyme
(unique pseudonymized identifier for each patient), which are identifiers used to order stays for each patient.
A includes the Diagnostic Principal (DP) (the reason the patient was admitted to the unit and/or
hospitalized), Diagnostic Relié (DR]) (all conditions that could be related to the principal diagnosis), and
Diagnostic Associé Significatif (DAS) (all complications and comorbidities that could impact the course
of the hospitalization), coded according to the World Health Organization’s [International Classification of Dis-|
leases, 10th Revision| (ICD-10). It also contains medical procedures, coded according to the Classification
Commune des Actes Médicauz ‘ Among the other information available, the following will be used for
this study: geographic code (postcode), gender (consistency of information) and mode of admission and
mode of discharge (e.g. home, another hospital).

The [PMS]| will be the main data source used to reconstitute patient characteristics. Concerning environmental
factors, we cross-referenced geographical data (limited) from the PMSI with tables from the Institut National
de la Statistique et des Etudes Economiques (INSEEF)

1.2 Research theme
1.2.1 Study background

Although the risk of rehospitalization has often been studied and is well documented in international publi-
cations, the reasons for rehospitalization remain poorly understood. It has already been shown that certain
rehospitalizations have a deleterious effect on patients’ well-being and lead to a considerable increase in hospital
expenditure in the United States [3, 4]. A study by the [Agency for Healthcare Research and Quality| (AHRQ)
estimates that in 2011 there were 3.3 million all-cause re-hospitalizations in the United States within 30 days of
hospital discharge, representing $41.3 billion in hospital expenditures. A relevant question is whether hospital
readmission can be an indicator of the quality of the health care system. In addition, a better understanding
of the factors associated with rehospitalizations would allow us to develop strategies to avoid it.

1.2.2 Research objectives

We attempted to measure the impact of individual and environmental factors that may be associated with
rehospitalization, taking into account not only age and length of stay, but also a number of individual clinical
factors (e.g. comorbidities, Charlson Comorbidity Index), as well as socio-economic factors measured at an
aggregate level (so-called environmental factors) such as a deprivation index, and the public or private status
of the hospital. Based on the results of these analyses, we tried to draw up an overview of the situation in
order to provide a better understanding of its determinants. Our main objectives were first to assess the impact
of individual factors using a Cox proportional-hazards model. Then, using multilevel logistic regression, we
investigated the effects of environmental (socio-economic) factors on the risk of rehospitalization at 30 days.

2 [INSEE] is a public organization responsible for producing, analyzing and publishing official statistics on the French economy
and society.



Chapter 2

Methodology

The purpose of this chapter is to clarify matters, starting with the definition of the inclusion criteria. Then
we’ll discuss the factors that should be considered, and finally we’ll look at the statistical methods that can be
considered for the analyses.

2.1 Inclusion and exclusion criteria

We considered patients over 18 years old, hospitalized for prostate surgery between January 2012 and November
2014, with the aim of tracking 30-day rehospitalizations. Patients included in the study must have one of the
inclusion pathologies, referenced as [DP} [DR] or [DAS] and must have undergone one of the surgical procedures
specified in the proposal, both identified respectively by the [[CD-10] and [CCAM] codes listed in Appendix [A71]

Patients who had undergone prostate surgery in the year (365 days) prior to the initial, also called index, hos-
pitalization were excluded from the study. Deaths recorded during the index hospitalization were excluded due
to their extremely low percentage of 0.16% (449 deaths out of 275189 hospitalizations) of cases. Only
stays with home admission modes were selected, excluding stays and sessions corresponding to specific and/or
iterative treatments. Iterative stays are identified by a specific[GHM] the list of which is given in Appendix
[AT.3] Figure[2. below, gives an overview of the flowchart of inclusions.

PMSI databases
Jan. 2012 to Dec. 2014

|
{ X \

2012 2013 2014
\] \J \]
101104 patients 100411 patients 105327 patients
met inclusion criteria met inclusion criteria met inclusion criteria

8492 exclusions! 9169 exclusions! 14608 exclusions

\/ v \/

92612 patients included 91242 patients included 90628 patients included

12

Figure 2.1: Flowchart of inclusions by year

Finally, 4009 duplicate stays were excluded, keeping only the patient’s first hospitalization. According to these
inclusion criteria, the study will be carried out on 270473 patients.

1 Already been hospitalized for the condition in question within 365 days, hospitalization not coming from home, deaths.
2 Hospitalizations during December 2014.



2.2 Materials

We worked with SAS throughout the study, both to manipulate and analyze [PMS]]
‘ data. The construction of the outcome and new variables was necessary as the infor-
b@ ) mation is available but not coded appropriately for the study. A detailed explanation

of the construction process for these variables is provided in the following subsections.

2.2.1 Outcome: 30-day rehospitalization

In the PMSI databases, we can find the start of the stay, identified by Numéro de Séjour, and the end of the
stay, obtained by adding the length of stay to the Numéro de Séjour. Once the start and end of the stay have
been correctly identified, we calculated the time elapsed between two hospitalizations. See Appendix for a
schematic example and further explanation.

This enabled us to access two key pieces of information:

- The outcome: whether or not the patient was rehospitalized within 30 days.

- The time to rehospitalization, called Delay, which was used as a time-to-event variable, allowing us to
apply survival models.

To construct the outcome, we constructed a variable coded 1 when the delay was between 1 and 30 days, and
0 otherwise. Only the time between the first rehospitalization and the index hospitalization was taken into
account, as specified in the proposal.

The delay was introduced in the form of a new variable called Delay, corresponding to the time elapsed between
the index hospitalization and the following one.

2.2.2 Individual factors (patient characteristics)

Concerning individual factors, we considered age and length of stay, the construction of the Charlson comor-
bidity index, commonly used when analyzing 30-day rehospitalization |20} [23]; and after studying the literature
[24, 19|, the Elixhauser index seemed a worthwhile idea to consider.

The [Charlson Comorbidity Index] (CCI]) is the scoring system most widely used by researchers and clini-
cians to measure comorbidities. This measurement tool provides a weighted score of a patient’s comorbidities
by considering the level of severity of 17 (19 depending on the definition) predefined comorbid disorders, as well
as the number of disorders present among them. Based on a similar principle, but with an approach focusing
more on the number rather than the weight of comorbidities, we can define the Elixhauser index. The index
is defined by 31 comorbidity groups, weighted uniformly. For both indices the weights are summed, the higher
the score, the higher the expected hospital resource utilization and mortality rate, which is why they are useful
in a rehospitalization study. They were built up using codes; the list of groups, associated codes and
their weighting is given in Appendix These pathologies will be sought on patients’ [DP} and [DAS]
recorded at index hospitalization.

Finally, for exploratory investigation we built a variable distinguishing different ranks of cancer at inclu-
sion. The ranks considered were constructed on the basis of code referencing. Three groups were
defined. A moderate rank group for benign prostatic hyperplasia and low-grade prostatic dysplasia. A high
rank group, covering carcinoma in situ of the prostate (high-grade dysplasia), benign tumour of the prostate
and unpredictable tumour (or tumour of unknown evolution) of the prostate. And the last group - very high
rank - concerns exclusively malignant tumours of the prostate. In addition, a variable distinguishing medical
procedures undergone at inclusion was constructed. It is based on [CCAM]| groups. Three groups were also
considered: anaesthetic procedures, surgical procedures and technical procedures. These partitions, as well as
all the codes sought, are detailed in Appendix



2.2.3 Environmental factors

The second line of research focused on environmental factors. The aim was to include potential variations
between care in different hospitals or different localities.

The first step was to construct an urban/rural status indicator for the household. The has cate-
gorized each commune as rural or urban on the basis of 2012 population census data. To define the degree of
urbanization, [NSEE] has classified as urban units those communes or a set of communes comprising a contin-
uous built-up area (< 200m between two constructions) inhabited by at least 2,000 people. Communes with
such urban units are known as "Urban municipalities", and other municipalities as "Rural municipalities". By
cross-referencing [[NSEE] tables with the geographic codes available in the [PMS]] tables, we were able to recon-
struct the urban or rural status of the included patients’ household.

In a second step, we also reconstituted an index of deprivation, using the[French Deprivation index| (FDep)).
The[FDep|index was created to provide a general population geographical indicator of social disadvantage specif-
ically adapted to health studies on the French population. The FDep index was defined as the first component
of the principal component analysis (PCA) (67-70% of the total variance explained, depending on the period)
of the following four variables: median income per consumption unit in the household, rate of baccalaureate
holders in the non-educated population aged 15 and over, unemployment rate in the working population aged 15
to 64, and rate of blue-collar workers in the working population aged 15 to 64. This is applied at commune level,
for more aggregated scales such as the postcode, department or region, the population-weighted average of the
score for the commune is used. We used the 2009 references for 2012 and the 2013 references for 2013-2014. In
addition, most studies |15} 9] divide the index into quintiles, which makes it possible to choose the middle
class (around 0) as the reference.

The final step, concerning environmental factors reconstitution, consisted in identifying the public or private
status of the hospital where the index hospitalization took place. For this purpose, we used the number
as a basis, and cross-reference it with the type of hospital for each stay; public status corresponding to public
hospitals (e.g. Centre Hospitalier Universitaire (CHUJ)), and private status was for private for-profit/nonprofit
hospitals.

Note: It was not possible to reconstitute environmental factors for all patients, due to missing or incomplete
geographic codes. We obtained 8.03% of missing values.
2.2.4 Summary of factors and their coding

The report contains code extracts, hence the Table below is provided for guidance. It illustrates the initial
modalities of the factors and their label in code examples.

Variable Label Type

RH30 Rehospitalization within 30 days Binary (0: No rehospitalization, 1: Rehospitalization)
Delay Time-to-event (delay) Quantitative in days

Age Age Quantitative in years

LOS Length of stay Quantitative in days

CCI Charlson Comorbidity Index Quantitative index

ELX Elixhauser Comorbidity Index Quantitative index

CR Cancer Rank Qualitative 3-level (Moderate, High, Very High)

MP Medical Procedure Qualitative 3-level (Technical, Anesthesia, Surgery)
Rur Rural status Binary (0: Urban municipalities, 1: Rural municipalities)
FDep French Deprivation index Quantitative index

Pub Public status Binary (0: Private hospital, 1: Public hospital)

Table 2.1: Label and type of variables constructed for each factor



2.3 Statistical methods

We can divide this project into three main lines of research.

e Univariate Analysis: Association of factors with rehospitalization.

e Multivariate Analysis: Association of individual factors with the risk of rehospitalization by multivari-
ate Cox regression analysis.

e Multilevel Analysis: Association of individual and environmental factors with the risk of rehospitaliza-
tion by multilevel logistic regression.

The first line of research, corresponds to the initial descriptive phase of the factors considered for this study.
Each factor corresponds to a possible covariate, and we needed to know how these covariates behave, study
them and analyze them. Analyses of the distribution of quantitative and qualitative covariates according to
their modality; and tests dedicated to the study of relationships between covariates and with the outcome, were
carried out. Univariate analysis was essentially based on Chi-square and Student’s t-tests.

The aim of the second line was to propose a model, adapted to survival data, enabling us to estimate and
characterize the association between outcome and the individual factors selected in the first line of research.

In epidemiology, we are often led to describe and identify the factors associated to an event, and this is the aim
of this research project. The outcome has two modalities: occurrence or non-occurrence of the event studied, in
this case, whether or not the patient is re-hospitalized within 30 days. Two points of view can be adopted in this
type of research. We can be interested in the probability of occurrence of the event, or in the probability of not
yet having experienced the event. Given the binary character of the outcome, these two points of view led us to
consider two main approaches to statistical analysis: Logistic regression and the Cox Proportional-Hazards
model (Cox model), also called Cox regression.

The logistic regression is designed to describe and identify the factors associated to the event whatever the time
at which it occurs. This model gives a first idea of the path to follow in the search for factors. This is why we
generally start with logistic models as a basis

To take into account time-to-event and the right censoring of the data, we have to consider a survival analysis
such as the Cox proportional-hazards model. However, Cox regressions are more complicated to fit than logistic
regressions, because of the proportional-hazards assumption, which will be detailed later. As this model is the
most appropriate for the data used in this study and for analyzing the risk of rehospitalization at 30 days,we
will limit this Master’s thesis to detail and focus on interpreting the results of the Cox proportional-hazards
model for individual factors.

In order to be more precise on the question of patients’ risk of 30-day rehospitalization, it may be useful to
take into account environmental factors. We did not seek to measure these effects, but we did want to take into
account potential correlations, for example due to socio-economic conditions between patients. This was the
subject of the last line of research, focusing on the construction of Multilevel Logistic regressions.
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Chapter 3

Selection of relevant covariates

It is generally admitted that the construction of multivariate models must be guided by a thorough knowledge
of the subject. A study must be carefully planned, guided by the research questions and the methods envisaged
for data analysis. Since knowledge of the subject is often limited or, at best, fragile, it is necessary to build
models based on the available data.

One of the key questions in covariate selection is which of the covariates should be included in the model.
Virtually all statistical software contains covariate selection procedures. This has made their use very popular,
especially with end-users who have no formal training in statistics. However, this widespread availability has
been a breeding ground for many misunderstandings about the role and necessity of covariate selection.

The other key point to remember is balance. The statisticians need to reach a balance by including the correct
number of covariates in the regression equation:

e Too few: Underspecified models tend to be biased.
e Too many: Overspecified models tend to be less precise.

e Just right: Models with the correct terms are not biased and are the most precise.

To achieve this balance, we carried out univariate analyses to ensure the relevance of the chosen covariates,
and also used classification, which as we shall see, enabled us to filter out certain covariates; these methods are
presented in the following sections.

3.1 Univariate Analysis

After an initial descriptive analysis of the covariates, using FREQ and MEANS procedures, we aim to test the
association between the outcome and one covariate at a time.

Univariate analyses were performed to filter "by hand" the covariates to be included in the model. We kept
those for which the association with the outcome is sufficiently strong, with the association considered significant
for a p-value under 0.20. A threshold of 5% (p-value under 0.05) would be far too strict in this initial variable
selection stage (D. Commenges and H. Jacqmin-Gadda, 2015, p.96 [6]).

The two statistical tests used are those mentioned in the methodology, the Chi-square test and the Student’s t
test. In fact, given the binary nature of our outcome, and the data available, these two tests proved to be the
most suitable for carrying out the initial association analyses. The assumptions required for their application
were easily verified thanks to the large number of patients included in the study and their distribution. More-
over, observations are independent, since one observation corresponds to exactly one patient.

The following subsections present the tests and associated SAS procedures, and justify their correct use in this
study.



3.1.1 Pearson Chi-square test

Factors can be qualitative variables such as the presence of other pathologies coded by 0 (absence of pathology)
or 1 (presence of pathology). This involves comparing two binary variables together (outcome and factors); in
order to compare those kinds of variables, the statistic we used is the Pearson Chi-square (x?) one.

The Pearson Chi-square statistic is computed as,

N P (ni; — ei;)
X2:ZZ J L)
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where, N corresponds to the number of modalities of the first variable and P to the number of modalities of
the second variable; n;; is the observed cell count in the ith row and jth column of the table; n;. represents
row totals and n.; column totals and e;; is the expected cell count in the 7th row and jth column of the table,
computed as,

Under the null hypothesis that the N row and P column variables are independent, x? has an asymptotic
Chi-square distribution with (N — 1)(P — 1) degrees of freedom.

The assumptions underlying the use of this statistical test have been verified in our study and are listed down
below:

- Categorical variables: The Chi-Square Test of Independence determines significant associations between
2 categorical variables.

- Simple random sample: The test assumes data is obtained from a random sample.

- Mutually Exclusive Categories: Variable categories must be mutually exclusive. This means that
each subject fits into one and only one level of each variable.

- Single Data Contribution: Each patient may contribute to one and only one cell in the Chi-Square
test.

- Sample size: The sample size is assumed to be sufficiently large. If a chi-square test is performed on too
small sample size, the chi-square test will produce an invalid inference.

- Expected cell count: The expected frequency in each cell should be five or more in at least 80% of the
cells. If this assumptions is not verified, we can attempt a Fisher’s exact testﬂ

- Independence: The observations are always assumed to be independent of each other.

Finally, it’s pretty simple to run the Chi-square test with SAS, we just used the FREQ procedure with ’chisq’
option, specified in the TABLES statement. The syntax of the code evaluating the association, between cancer
rank (CR) and the outcome: rehospitalization within 30 days (RH30), by using a Chi-square test, is shown
opposite.

PROC FREQ DATA=Table;
TABLES RH30*CR / chisq;
RUN;

The FREQ procedure computes several chi-squared tests for each two-dimensional table, the output statistic
called Chi-square is the one corresponding to the Pearson Chi-square test.

L If > 20% of the cell frequencies are < 5, SAS will print a warning, and we should not use the chi-square test. Instead, we use
the Two-sided Fisher’s Exact Test (printed by default when the table is 2 x 2)



3.1.2 Student’s t-test

On the other hand, factors can be quantitative variables such as age or length of stay, coded in a continuous way.
This involves comparing a binary variable with a continuous variable. For this purpose, we used a Student’s
independent samples ¢-Test. It compares the means of two independent groups in order to determine whether
there is statistical evidence that the associated population means are significantly different.

In the case of an independent samples t-test, the degrees of freedom are calculated based on the sample sizes
of both samples (n; and ny). The formula is df = ny + ny — 2. The t-statistic to test whether the means are
different can be calculated, using empirical mean, as follows:
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is the pooled standard deviation of the two samples, using the unbiased estimators of the two population vari-
ance. It is designed so that its square is an unbiased estimator of the pooled variance, whether or not the
population means are exactly the same.

Please note that the use of this statistic and this estimator of the pooled standard deviation must be preceded
by a verification of the following assumptions.

- Normality: The data should be approximately normally distributed. While t-tests are considered robust
to moderate deviations from normality, severe violations can have an impact on the accuracy of test
results. In the case of very large samples, normality is assumed.

- Independence: The observations in the samples must be independent of each other.

- Homogeneity of Variances: For the independent samples t-test, the variances of the two compared
populations must be equal or at least approximately equal. This assumption is commonly known as the
homogeneity of variances. If this assumption is not met, other tests can be used, such as Welch’s t-test,
which does not require equal variances.

Within the scope of our study, theses assumptions are met for the continuous variables we wished to test;
allowing us to apply the most basic ¢-tests and t-statistics to our research and data analysis. In any cas, SAS’
TTEST procedure ensures that equality of variances is respected by running a test of variance homogeneity
called 'Folded F’, and returns the results of the t-test in the event of equality and of an adapted t-test in the
event of variance inequality.

The null hypothesis of the 'Folded F’ test is that the variances are equal; the alternative is that the variances
are not equal. This test is useful to determine which output we’ll rely on: 'Pooled’ (equal variance assumed)
for a large p-value or 'Satterthwaite’ (equal variance not assumed) for a small p-value. The test statistics
and formulas used are those commonly introduced, and can be found in the SAS Help Center, in the TTEST
procedure details section.

An example of code testing the association between rehospitalization within 30 days (RH30) and patient age
(Age) is shown below.

PROC TTEST DATA=Table;
CLASS RH30;
VAR Age;

RUN;

In this study, equality of variances was validated for each continuous covariate, so we relied only on pooled
results. For this reason, we don’t go back over the statistics and tests adapted for variance inequality, but SAS
help is precise and detailed on this subject.



3.2 Classification

Sometimes it can be useful to filter out covariates and select those that best explain our results. In our study,
we chose to consider only certain comorbidity groups, using Elixhauser’s predefined comorbidity groups. This
choice was the consequence of too strong correlations between the index itself and the other covariates, it will
be discussed in section [5.3] dedicated to correlations and in detail in section [[T.2.1] Thus, we needed to know
which comorbidity groups were the most influential.

A well-known method is to classify variables using a decision tree, which highlights the most important vari-
ables. Decision tree algorithms use data to divide the set of all possible combinations of covariate values, into
non-overlapping regions. These regions correspond to the end nodes of the tree. Each region is described by a
set of rules, which are used to assign a new observation to a particular region. In the case of a classification
tree, the predicted value for an observation is the most frequent level of the response variable in that region.
By construction, the first nodes of the tree are made up of the most important covariates.

The HPSPLIT procedure is adapted for this purpose, it is a high-performance SAS procedure that builds tree-
based statistical models for classification and regression. The syntax for building a classification-tree for RH30
prediction from Elixhauser’s 31 comorbidity groups (ELX GRP 1, ELX GRP 2, ..., ELX GRP 31) is as follows.

PROC HPSPLIT DATA=Patients;

CLASS RH30;

MODEL RH30 = ELX_GRP_1 ELX_GRP_2 ... ELX_GRP_31;
RUN;

The MODEL statement specifies RH30 as the outcome and the variables to the right of the equal sign as the
covariates. The inclusion of RH30 in the CLASS statement designates it as a categorical outcome and requests
a classification tree.

The following Table is a short version of the variable importance table obtained from the classification of
the 31 comorbidity groups (before any exclusion/correlation analysis).

Learning
Covariate Label Relative Importance
ELX GRP 2  Cardiac Arrhythmia 1.0000 15.8256
ELX GRP 20 Solid Tumor without Metastasis 0.6827 10.8047
ELX GRP 14 Renal Failure 0.6491 10.2726
ELX GRP 1  Congestive Heart Failure 0.4014 6.3526
ELX GRP 19 Metastatic Cancer 0.3966 6.2766
ELX GRP 11 Diabetes Uncomplicated 0.3322 5.2575
ELX GRP 3  Valvular Disease 0.3309 5.2367
ELX GRP 25 Fluid and Electrolyte Disorders 0.1560 2.4682
ELX GRP 27 Deficiency Anemia 0.1372 2.1718
ELX GRP 26 Blood Loss Anemia 0.1356 2.1462
ELX GRP 16 Peptic Ulcer Disease excluding bleeding 0.1129 1.7868
ELX GRP 6  Hypertension Uncomplicated 0.0953 1.5076

Table 3.1: Classification tree for 12 Elixhauser comorbidity groups

This gives us an initial idea of the comorbidities that can be considered as covariates. We’ll keep just 10 out
of 31 groups, to ensure that the model is not too complex without missing something. We need to analyze
correlations before including them in a model. This correlation analysis will be discussed again in chapter [f]
and the associated challenges in section [11.2.1] In what follows, we focus on model selection and fitting.
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Chapter 4

Cox proportional-hazards model

Once the covariates had been identified, we moved on to building the model itself. Readers are invited to refer
to Appendix if necessary for a brief introduction to survival data, their characteristics and some of the
basics needed to better understand the tools that will be presented here. As explained in the methodology
(section , for the analysis of individual factors, we chose to consider a Cox proportional-hazards model. The
semi-parametric version of the proportional-hazards regression model, proposed by Cox (D.R. Cox, 1972 [7])
and commonly called Cox [PH| model, is widely used in epidemiology to assess the effect of covariates and to
analyze survival data with right censoring, because it takes into account the time-to-event.

4.1 Model specification

Let y; be the outcome observation y for a patient ¢, 7 = 1,...,n. For each patient i we observe the vector

of p covariates X; = (X1, Xio, ..., Xip)T associated with this individual. The p covariates, Xi,...,X, , are

considered deterministic and can be quantitative or qualitative. The design matrix associated is defined as
= (1[X1]..|X,) € My (R).

In a Cox proportional-hazards regression model, the effect measure is the hazard rate, which represents the

risk of the event. The relationship between the hazard associated with the occurrence of an event and the vector
of p covariates is as follows:

Ai(t) = Xo(t) exp(B1 X1 + BaXio + -+ + BpXip) (4.1)
= Xo(t) exp(X/ )

where Ag(t) is the baseline hazard, and the p-vector 5 contains the regression parameters.

For the purposes of this study, we will use the following notation for the survival function (4.3) and the

cumulative risk function (4.4)).
t
S(t) = exp (—/ )\(u)du) (4.3)
0

£ = /O Mu)du (4.4)

The B vector is originally estimated by maximizing a partial likelihood (4.5) proposed by Cox (D.R. Cox,
1975 [§]),

H [ exp(X{ ) (4.5)

T >t exp(XTﬂ)

where, t; < ty < --- <t are the different event times observed and T is the survival time random variable for
right-censored data.
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4.2 Hazard ratio

There is a similarity between Cox’s hazard ratio and the odds ratio in logistic regression, the difference
being that the hazard ratio must be seen in terms of instantaneous risk. By definition, all subjects will experi-
ence the event if the follow-up time is long enough. We therefore interprete a group more at risk than another
(HR > 1) if the time-to-event is shorter than for the other group and vice-versa.

Given a model with p covariates, the model is written as the relation (4.1)) given above. We then have,

HRy (t) = exp(Br)

which is the hazard ratio associated with the covariate Xj adjusted on all other covariates, representing the
risk of one patient compared with another differing only through the value of the covariate Xj.

Another essential point to address is the confidence interval associated with the hazard ratio. Since the es-
timators of the regression parameters are distibuted asymptotically according to a normal distribution, the

construction of the 95% confidence interval for the regression parameter Sy is {BA;C +1.96 x U}c} where ﬁ is the

estimate of 3, and o}, the estimate of 0. However, we are interested here in the 95% confidence interval of
the hazard ratio. Since this is equal to the exponential of the regression parameter, we obtain the following in-

terval [exp(ﬁk —1.96 x &%); exp(Br + 1.96 x 6%)|. (D. Commenges and H. Jacqmin-Gadda, 2015, p.134-135 |6])

These two values are our main focus in this study. Their calculation is included in the dedicated SAS PHREG
procedure, which we’ll take a look at in the next section; before moving on to application conditions.

4.3 PHREG procedure

To perform a regression analysis of survival data based on the Cox proportional hazards model, SAS pro-
vides the PHREG procedure. This procedure fits the Cox [PH|] model by maximizing the partial likelihood and
computes the baseline survivor function by using the Breslow estimate expressed as follows (D.Y. Lin, 2008 [13]).

(XT's;)
ﬂ’ _ H eXp -
i=1 [Ez Ty>t; exp(XTﬁ)}

where s; is the vector of the sum of the covariate vectors of the m; patients who experienced the event at time ¢;.

In the case of many ex-aequo we can also use the Efron method by specifying it in the SAS PHREG procedure.
However, this method much more time consuming.

The syntax of this procedure is as follows.

PROC PHREG DATA=Patients
MODEL Delay+*RH30(0) = Age CR / rl;
RUN;

In the MODEL statement, the variable Delay, is crossed with the censoring variable, RH30 (the outcome), with
the value that indicates censoring is enclosed in parentheses. The values of Delay are considered censored if
the value of RH30 is 0; otherwise, they are considered event times.

SAS output will automatically produce a table displaying individual model effects and a table about hazard
ratios and estimates. We can use the HAZARDRATIO statement to obtain the hazard ratios for a main effect
in the presence of interaction (see Chapter |§[) and the option 'r1l’ in the MODEL statement to obtain risk limits,
which represents the 95% confidence interval of the

1 Parameter estimates will be marked with a hat.
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4.4 Assumptions underlying

Let us return to an essential point of the Cox [PH] model, which will dictate a major thrust of this thesis. The
Cox model makes no assumptions about the shape of the baseline risk - it is said to be freely variable - and
focuses on the regression parameters. On the log-scale the relation (4.1)) becomes,

log(Ai(t)) = log [Ao(t) exp(B1Xi1 + BaXi2 + -+ + BpXip)] (4.6)
=log(No(t)) + S1Xi1 + B2 X12 + - 4 BpXip (4.7)

In other words, the Cox PH model assumes that the effects of covariates are additive and linear on the log
rate scale. This is just one of the two fundamental assumptions of the Cox [PH|model. The construction of an
appropriate Cox [PH| model depends on the assumptions being met.

Methods for assessing the proper construction of a Cox [PH| model are an important part of any statistical
analysis, as investigators can be seriously misled if conclusions are drawn on the basis of erroneous assumptions.
The process of examining adequacy is a combination of graphical representations and more formal hypothesis
testing. In what follows, we’ll briefly present the hypotheses and stress the importance of verifying them. We’ll
present various methods for checking and overcoming the difficulties encountered, depending on the type of
covariates.

4.4.1 Loglinearity

The loglinearity assumption is the one shown by the relation . The covariates must behave linearly on a
log-scale. Depending on the type of covariate (quantitative or qualitative), the hypotheses will not be stated in
the exact same way, even if the principle remains identical. We will therefore distinguish this section according
to the type of covariate in order to offer greater clarity and examples.

4.4.1.1 Transforming qualitative covariates

In the case of qualitative variables, the logarithm of risk should increase by i € R as we move from one class to
the next. When covariates are binary-coded, the problem doesn’t arise (D. Commenges and H. Jacqmin-Gadda,
2015, p.73 [6]). By construction, going from level 0 to level 1 increases by exactly 5. However, as soon as the
covariate has more than 2 levels, the question remains as to how to estimate a [HR] between the first level and
a level at least two levels higher.

Let’s look at the [HR] estimate for the prostate cancer rank covariate, we’ll note Scr the regression parameter

associated to this covariate. According to ordinal coding, this covariate is coded as follows: (0) for moderate
rank, (1) for high rank and (2) for very high rank.

HR(l vs 0) —

Amigh(t)  Ao(t) exp(Bor(1)) exp(fon)
)\Moderate (t) )\0 (t) eXp(ﬂCR(O)) or
HR. o )\Vcry High(t) >\0 t) exp(ﬂCR 2))

(2vs0) —

( ( = eX
)‘Moderate(t) )\o(t) eXp(ﬂCR(O)) - p(2BCR)

On the log-scale, this gives us,

log(Amign (%)) — 1og(AModerate (t)) = log(Ao(t) exp(B3)) — log(Ao(t)) = log(Ao(t)) + Bcr — log(Ao(t)) = Ber
log(Avery High(t)) — log(AmModerate(t)) = log(Ao(t) exp(23)) — log(Ao(t)) = log(Ao(?)) + 2Bcr — log(Ao(t)) = 2B8cr

Thus, moving from level (0) - Moderate rank - to level (2) - Very High rank - increases the logarithm of risk by
28cr- In general terms, this is not what we want since loglinearity assumes a variation of 8 between each level
of the covariate Xj;. On the other hand, by using a binary coding for qualitative covariates, i.e. by introducing
several dummy variables to represent each level of the covariate, we will keep a comparison at one level and
thus an increase of [y per level.
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For example, with the prostate cancer rank covariate, the aim is to estimate the HR between three groups.

0 Moderate rank
1 fCR=1 1 ifCR=2
CR =4 1 High rank CR; = CRy =
0 otherwise 0 otherwise
2 Very High rank

In this context we only need two dummy variables, because if these two dummy variables are zero, the patient
will be diagnosed with a moderate rank of prostate cancer, which is then the reference. Including only the
dummy variables created to replace the ordinal covariate, the model can be written as follows.

)\(t) = /\0(t) exp(ﬂlCRl + ﬂQCRg)

One question that may arise at this point; Do we have to create dummy variables for each level instead
of keeping categorical coding? In fact, doing this will enable to test our loglinearity hypothesis for the
categorical coding. All we have to do is compare the AICs of the model built with categorical coding and the
model built with dichotomous coding. If both are identical, there’s no need to introduce dichotomous coding:
we can keep the categorical coding. Otherwise, we’ll have to work with dichotomous coding.

The advantage of SAS is that it does the dichotomous coding itself when using PHREG procedure via the CLASS
statement. In PHREG, the levels of the categorical variables are determined by the CLASS statement. In the
following instructions, the CR variable is declared as a class variable in the CLASS instruction. Parameterization
is used via the '(ref='Moderate')’ option, giving the model the Moderate rank as a reference

PROC PHREG DATA=Patients
CLASS CR (ref='Moderate');
MODEL Delay*RH30(0) = Age CR;
RUN;

The class variable CR generates two dummy variables as covariates and two regression coefficients are estimated
for the CR covariate levels, as if we were using CR; and CRjy. Therefore this is equivalent to,

PROC PHREG DATA=Patients
MODEL Delay+*RH30(0) = Age CR1 CR2;
RUN;

4.4.1.2 Conditions on quantitative covariates

When dealing with quantitative covariates, loglinearity assumes that a change of one unit in the continuous
covariate must have the same effect on the event under consideration, no matter what value we start with.

In our study, an obvious quantitative covariate to consider is age. Besides, it is often used to illustrate hypoth-
esis violation, since quantitative coding will imply a regular variation with the risk of rehospitalization, which
is potentially not always the case.

Having the following model,

A(t) = Ao(t) exp(8 x AGE)
On a logarithmic scale, this is equivalent to,

log(A(t)) = log(Ao(t)) + 8 x AGE
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For all times ¢, this is a straight line with intercept log(Ag(¢)) and slope 3. The logarithm of the rate increase (or
decrease depending on () for each unit increase in the age covariate. Thus, coding a covariate as a continuous
variable presupposes loglinearity, using, for example, a comparison of two patients aged X and X + 1 years
(difference of 1 year) involves,

_ Noesp(BX +1)
HRI year — )\O(t) GXp(BX) - p(ﬁ)

while for a 10-year difference we get,

Ao(t) exp(B(X + 10))
Ao(t) exp(BX)

HRlO year — = eXp(lOﬁ)

On a logarithmic scale, this implies that for a jump of 10 years, there is also a jump of 10 years in the regression
parameter (), indicating linear behaviour. Therefore, in order to incorporate a quantitative covariate into the
model, we must first ensure that its behavior is linear with 8 on the log-scale.

To do so, there are a relatively simple method which is very easy to implement, and gives a visual idea of
linearity. Indeed, if the covariate respects loglinearity, the plot of the intercept and slope B should be a straight
line. The aim here is to get an idea of its behavior using a dozen points and the associated B estimates. To
do this we propose to construct a 10-level categorical covariate using the deciles of our quantitative covariate
(D. Commenges and H. Jacqmin-Gadda, 2015, p.74-75 [6]). We then fit a Cox model with the categorized
covariate, producing a coefficient for each level. We’ll plot 3 estimates against the midpoints of each covariate
level, with B = 0 for the reference category (Reference). If the graph reflects a linear line, we can assume the
loglinearity assumption and thus use the covariate in a Cox [PH] model as a quantitative covariate.

Example: We had to test this hypothesis for several covariates, including age and length of stay. Figures [£.1]
and [£:2] are example of the graph obtained by this first method. To give an idea, the code associated with the
covariate Age is shown in the Appendix

Beta Beta
07 §

Age Length of stay

Figure 4.1: Beta estimates vs. Age covariate Figure 4.2: Beta estimates vs. LOS covariate
Figure should represent a linear relationship but appears to grow much faster for higher values of the age
covariate, which may indicate that, in this form, the covariate does not meet the log-linearity assumption. For

the covariate length of stay (LOS), the relationship presented in Figure may appear sufficiently linear to
suggest that the hypothesis can be verified (but this is an impression and not a conclusion).

Yet this is only a first and visual impression, there are other methods that can be used to confirm or refute
these impressions, as we’ll see in section [£.4.3]
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4.4.2 Proportional-hazards

The Cox [PH| model does not only assume log-linearity. Explicit in its name, the proportional-hazards assump-
tion is also assumed by the model. In the following subsections, we’ll look at where this hypothesis comes from,
what it implies and how to assess it.

Consistent with the design of a Cox model, the hazard ratio of two subjects i,j € {1,...,n} with covariate
vectors X; and X is given by,

Ai(t)  Ao(t)exp(X]B)  exp(XTB) , T gy — g
30 = 2o exp(XT8) = exp(xTp) — “P(Ki = X)78) = exp(fiy) e

HR;(t) =

This relation tells us that the hazard ratio does not depend on time ¢, indicating that instantaneous risks re-
main proportional over time. The model can only be valid if reality is consistent with this construction, which
is by no means automatic in reality and must be checked. Among the many methods used in epidemiology
for such purposes, we chose to implement two of them, one dedicated to quantitative variables, the other to
qualitative variables. These methods are quite intuitive and were chosen because they best reflect and translate
the assumptions.

4.4.2.1 Graphic validation method

The first method for checking assumption (for categorical covariates), and the one most commonly used

in epidemiology, is to plot log(—log(S(t)) curves stratified by covariate level to see if they seem parallel (D.
Commenges and H. Jacqmin-Gadda, 2015, p.140 [6]).

To clarify the mathematics behind this, we consider the case of a single binary-coded covariate X. By definition,
the hazard of a subject for whom Xj; = 1 and of a subject for whom X = 0 are linked by the following
relationship:

A1(t) = exp(B)Ao(t) (4.9)
Since the survival function can be written as (4.3)), we can express (4.9)) in the following form,

Si(t) = So(t) P
Equivalently,

log(51(t)) = exp(f)log(So(t))
—log(51(t)) = —exp(f) log(So(t))

This brings us back to the cumaltive hazard function.

A;(t) = exp(B)Ao(t)
log(As(t)) = log(Ao(t)) + B

Thus, following Andersen et al. (P.K. Andersen et al., 1993, p.539-542 [1]) discussion, one may plot the estimate
Ay(t, B) and Ay (t, 3) versus t (or log(t)). Kaplan-Meier curves can be used for this, see Appendix Under
the proportional hazards model, these curves should be approximately parallel, the constant vertical distance
between log Al(t, B) and log Ay (t, B) being approximately 3. This method can be extended to variables with
more than two modalities (P.K. Andersen et al., 1993, p.540 [1]), the curves must be parallel in pairs. Kaplan-
Meier curves can be plotted using the LIFETEST procedure, and in particular the '11s’ option is used to plot
loglogs curves, corresponding to the estimate Ao(t, B) and Al(t, /3’) versus log(t).

ODS GRAPHICS ON;
PROC LIFETEST DATA=Patients plots=lls;
TIME Delay*RH30(0);
STRATA CR;
RUN;
ODS GRPHICS OFF;
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Example. Loglogs curves were plotted for the different modalities of the Cancer Rank (CR) covariate, and for
a 3-level categorization of the Charlson Index (CCIJ).
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Figure 4.3: Log of negative survivor log estimated for Figure 4.4: Log of negative survivor log estimated for
3-level CCI covariate CR covariate

We note that the 3-level categorization of the CCI covariate respects the PH assumption, with the curves run-
ning parallel 2 to 2, see Figure[£.3] However, for the CR covariate, see Figure[:4] the situation is more delicate,
with a crossover and a lack of consistency for the Very High level. In addition, the curves for the moderate and
high levels are very close, which may reflect an insufficient difference between the risk associated with these two
levels. The coding of this covariate will need to be reworked before it can be included in a Cox model.

4.4.2.2 Interaction with time

To test hypotheses of proportionality of risk for quantitative covariates, a practical solution is to introduce an
interaction between a continuous function of time and the covariate to be tested.

If we include in the model an interaction term between time (or a function of time such as the logarithm) and
the variable we wish to test, this will introduce a parameter B, associated with a time-dependent variable:
X x log(t). Considering this function of time, the hazard ratio for a unit deviation of X} increases linearly
with time. Thus, a test of nullity of the coefficient By, is equivalent to a test of hazard proportionality for Xj,
(D. Commenges and H. Jacqmin-Gadda, 2015, p.142-143 |6]).

It is easy to do this with SAS by including it directly in the PHREG procedure by adding an interaction term
as follows.

PROC PHREG DATA=Patients;
MODEL Delay*RH30(0) = Age AgeT;
AgeT = Agexlog(Delay);
TEST AgeT = 0;

RUN;

In the SAS code, TEST statement is used to request a test on the nullity of the coefficient associated with the
parameter AgeT. If the null hypothesis is rejected, we conclude that the coefficient is significantly different from
zero. Therefore, the interaction is significant.

Using age as an example, the interaction with time tested according to the syntax presented above gives us a
p-value of less than 0.0001 for the covariate Age (Age), for the interaction between age and the logarithm of
time (AgeT), as well as for the requested null coefficient test. This tells us that for age, the hazard ratio for a
one-year difference increases linearly with time, which does not support the proportional hazard assumptions.
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4.4.3 Martingale residues

In the foregoing, we proposed methods widely used in epidemiology, which seem to be the most transparent.
However, there are other more powerful methods based on residuals. Several types of residual have been pro-
posed and discussed, but residuals are much trickier to use for assessing the fit of a Cox PH model than they
are for a linear model. This is one of the reasons why Schoenfeld and Cox-Snell residuals won’t be presented
here, but martingale residues will be briefly introduced. The other reason is that martingale residues can be
used to check both loglinearity and [PH] assumptions. In addition, methods are available in SAS.

Martingale residuals are derived from the theory of counting processes. Our study can be seen as a simple
counting process: the process takes the value 0 until a certain time 7" when the patient is rehospitalized, at
which point the process takes the value 1. A test using martingale residuals has been developed (D.Y. Lin et
al. 1993 [14]) to test the [PH| hypothesis globally (D. Commenges and H. Jacqmin-Gadda, 2015, p.142;152 [6]).
Martingale residuals are also useful for checking loglinearity (by verifying the functional form of the variable)
(D. Commenges and H. Jacqmin-Gadda, 2015, p.149 |6]).

The graphs and tests based on martingale residues are implemented directly in the PHREG procedure, in the
ASSESS statement. The 'resample’ option of ASSESS gives a test of[PH]based on a Kolmogorov-type supremum
test. The null hypothesis is that the covariate respects hazard proportionality. An example of code to test the
proportional hazards assumptiorﬂ for the age covariate is given below (D. Commenges and H. Jacqmin-Gadda,
2015, p.337-338 16]).

PROC PHREG DATA=Patients;
MODEL Delay*RH30(0) = Age;
ASSESS VAR=(Age) PH / resample;
RUN;

We emphasize that these tools are time-consuming and only give a general idea which do not allow us to assert
that the coding is adequate in case of non-rejection of the supremum test.

Example. Here we show two examples of ASSESS statement applications, for the Age and LOS covariates.
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Figure 4.5: ASSESS PH output of Age covariate Figure 4.6: ASSESS PH output of LOS covariate

Both graphs on Figure and obtained via ASSESS for Age and LOS covariates, point in the same
direction: reality is far from the simulations. The shape gives us a visual indication that the [PH] hypothesis has
been violated, and the supremum test at the bottom right is significant, confirming the violation. Considering
the previous results on [PH| assumptions, we can assert that these two covariates will have to be transformed in
order to be included in a Cox [PH] model. The new challenge at this stage is to deal with covariates that don’t
support the model’s assumptions. The following section presents possible solutions to this problem.

2 To test loglinearity the code is similar, just remove the ’PH’ option, in this case the null hypothesis is that the functional form
of the covariate has been correctly specified.
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4.5 What if assumptions underlying the model are violated ?

Once we have identified the variables that do not meet the assumptions of the model, we must find a way to
address them.

4.5.1 Quantitative covariates

Generally, it’s preferable to keep quantitative covariates in continuous form whenever possible, since we have
more information, interpretation is straightforward, and we use a single degree of freedom for testing. However,
if the hypotheses are not met, we have to transform the variable.

There are several options to consider, the most common of which are the following:

e Introducing a continuous function of the covariate: Depending on its evolution over time, the
variable can be transformed into an appropriate functional form, e.g. squared or logarithmic. It preserves
all the information, in the case of predictions studies it is very interesting to obtain more precise models.
In the context of association studies, one will tend not to introduce a covariate function, because it
complicates a lot the interpretation of the covariates.

e Categorization: The idea is to divide the continuous covariate into several sub-levels, with each interval
corresponding to a level. It allows researchers to avoid strong assumptions about the continuous covariates.
This approach is often favored by non-statisticians because it has the advantage of providing results that
are easier to interpret. However, categorization raises several issues such as the number of cutpoints,
where to place them and the loss of information.

e Modeling interaction with time: If we wish to model hazard ratios as a function of time, we will
introduce interaction with time into the model. However, care must be taken to keep the model reasonably
simple and easy to interpret. Logarithmic or quadratic relationships can be modeled, but more complex
models will be much harder to interpret. Additionally, different hazard ratios will have to be given for
different time periods for the covariate that does not respect the model’s assumptions (D. Commenges
and H. Jacqmin-Gadda, 2015, p.148 [6]).

The interpretation of hazard ratios and the search for associations are at the heart of this study, therefore
we gave priority to the categorization of quantitative covariates. Which raises another important query; How
to define cutpoints?. In the literature, the most common way to define cutpoints is to consider deciles or
quartiles. This method will be studied to get a first idea of the variation of the covariate regarding the outcome.
In a second step, to allow the best segmentation, one can study the trends of the covariate relatively to the
outcome. Each time the rehospitalization rate changes, a new category can be considered.

Note: After adjusting the functional form, univariate analyses should be performed once again to confirm that
the covariate still provides enough information to be studied.

4.5.2 Qualitative covariates

Qualitative variables generally cause fewer problems than quantitative ones, not least because loglinearity
assumptions can be avoided by introducing dummy variables. However, when they do not satisfy the
proportional-hazards assumption, we can try to combine certain modalities. This was the case in our study for
medical procedure covariate; see Appendix

Ultimately, in the case of a binary variable that does not meet the hypothesis, stratification remains the
easiest option to implement. When the effect of a qualitative covariate is found to vary over time, it may be
interesting to stratify based on this covariate (D. Commenges and H. Jacqmin-Gadda, 2015, p.147 [6]). But
this is only useful when the covariate is not of great interest in our study and is qualitative with few categories.
Indeed, we cannot stratify with respect to this covariate and introduce it into the model. Thus, if we choose to
stratify with respect to a certain covariate, we will not be able to quantify its effect on the event.

In order to make a clean selection of covariates while taking into account the assumptions of the Cox model,
we will have to combine all these methods to find the form that best fits the model.
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Chapter 5

Covariates correlation

Once all the covariates have been checked to the model assumptions, it is still necessary to ensure that these
covariates are not correlated which each other. One of the main purposes of regression analysis is to indepen-
dently assess the effect of each covariate. The idea is that we can change the value of one covariate and not
the others. However, when covariates are correlated, it indicates that changes in one covariate are associated
with shifts in another one. The stronger the correlation, the more difficult it is to change one variable without
changing another.

Correlated covariates causes the following two basic types of problems:
e It reduces the precision of the estimated coefficients, which weakens the statistical power of our model.

e The coefficient estimates can swing wildly based on which other covariates are in the model. The coeffi-
cients become very sensitive to small changes in the model.

However, these issues affect only covariates that are correlated. The solution is to remove some of the highly
correlated covariates. We will not introduce them simultaneously, instead we’ll run several models; one model
based on the first covariate and one based on the second.

In statistics, one way to measure these associations is to use correlation coefficients. They provide a quantitative
measure of both the direction and strength of this tendency to vary with each other. In this study, we’ll be
comparing categorical variables, so we’ll essentially be using Cramér’s V to measure this.

5.1 Cramér’s V correlation coefficient

Cramér’s V coefficient is a measure of association derived from better-known Pearson’s chi-square, involving
the differences between observed and expected frequencies. It is designed to vary between —1 and 1 for 2 x 2
tables and between 0 and 1 for larger tables. Cramér’s V is computed as,

Nij — €45 2
Ly, e

e
V= i for N x P tabl
min(N —1,P 1) or T abies

where n;; is the observed frequency in table cell (z,7) and e;; is the expected frequency for table cell (4, j).

In our study we worked with a majority of binary variables (due to Cox model assumptions), by doing so, we
study 2 x 2 tables. Note that in this context, Cramér’s V can be simplified as follows,

V= (n11n22 - n12n21)

A/M1.M2.M.1M.2

Once we’ve calculated our scores, we need to define a threshold above which we can’t neglect the correlation
between covariates.
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5.2 Association thresholds

In the literature, the rule of thumb to interpret the size of a correlation varies according to the study. In
Sociology, the correlation thresholds given in Table are the most often applied, a study in Psychology (J.F.
Hemphill, 2003 ) was carried out on which thresholds must be chosen, the conclusions of which lead in the
same direction. The literature remains unclear concerning the thresholds used in Medical research.

Size of Correlation Interpretation

.70 to 1.0 (—.70 to —1.0)  Very strong positive (negative) correlation
.40 to .70 (—.40 to —.70) High positive (negative) correlation

.20 to .40 (—.20 to —.40) Moderate positive (negative) correlation
.00 to .20 (.00 to —.20)  Negligible correlation

Table 5.1: Rules of thumb about correlation coefficient size

When J. Cohen (J. Cohen, 1988, p.478 ) discussed effect sizes in the context of multiple regression and cor-
relation analysis (MRC), the following thresholds were introduced: under 0.15 is considered low, 0.15 to 0.35 is
moderate and above 0.35 is considered high. Cramér’s V can be considered as a standardized effect size because
they indicate the strength of the relationship between variables using unitless values that fall within a range of
-1 to +1. Since the principles of f? discussed by Cohen and Cramér’s V are similar, we will consider a threshold
of 0.15 for neglecting the correlation in our study. Beyond this threshold, we will consider that the covariates
cannot be included in the model at the same time. If necessary, it can be slightly relaxed to 0.20.

To simplify the process, we implemented a macro that creates a correlation matrix containing Cramér’s V scores

(of the same design as Pearson’s). The macro is accompanied by a heatmap, which legend is adapted to the
tolerance threshold defined above. It can be consulted in Appendix [B-3]

5.3 Application

In our study, we quickly realized that the Elixhauser index was highly correlated (> 0.20) with all covariates
except age, see Figure making it impossible to use it in a model containing covariates other than Age.

Cramér’s V Heatmap

Age

Length of Stay

Charlson
Elixhauser - 0.2

Medical Procedure
-0.2

Figure 5.1: Heatmap for Age, LOS, CCI , ELX , and MP
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Since we wanted to work on the basis of Elixhauser, we proposed to perform a classification of comorbidity
groups. However, in doing so, we introduce a new covariate for each group. Therefore, we need to elimi-
nate potential comorbidity groups that are correlated with the other covariates and with each other. We used
our macro to do this. We constructed a matrix of the correlation between the two covariates chosen for our
model - Age and LOS - and the 31 comorbidity groups, and obtained the heatmap presented below on Figure[5.2]
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Figure 5.2: Heatmap for Age, LOS and 31 Elixhauser comorbidity groups

As the group of comorbidities associated with cardiac arrhythmia is correlated with age, we removed it. We
also had to choose between certain comorbidity groups that were correlated with each other, basing this choice
on an initial classification containing all the variables. When two variables were correlated, we kept the one
with the highest weight in the classification.

We carried out a new classification, excluding the correlated variables, and reproduced a new heatmap, in order

to obtain 10 uncorrelated comorbidity groups providing the most information. We obtained the heatmap shown
in figure see Appendix One of the final Cox PH models was built on the basis of these covariates.
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Chapter 6

Interaction between covariates

6.1 Motivation

An interaction effect occurs when the effect of one covariate depends on the value of another. This type of effect
makes the model more complex, but if the real world behaves in this way, it’s essential to incorporate it into
our model. Failure to include interaction terms in a model will result in assessing only the main effects without
taking into account the impact of interaction.

As an example, we consider a Cox [PH| model adjusted to explain the risk of rehospitalization within 30 days by
age (Xage), Length of stay (XLos) and Charlson comorbidity index (Xccr). This Cox [PH| model assumes that
the hazard for the ith individual (i = 1,...,n) is as follows,

Ai(t) = Ao(t) exp(B1Xinge + B2 Xiros + B3 Xiccn)

Thus, the model asserts that LOS acts linearly on log(A;(¢)) and that the coefficient of linearity is independent
of the type/number of pathologies (CCI score) that the patient may have. However, one can imagine that the
effect of length of stay on the patient’s condition depends on the patient’s comorbidities.

One possible model with interaction between length of stay and Charlson score is obtained by replacing the
covariate LOS by two covariates,

Xcer if LOS is 4 days or less Xcor  if LOS is more than 4 days
Xcerg, = Xccr, =
0 otherwise 0 otherwise

which is done by adding a crossover term, CCI x LOS, as a covariate in the model code.

6.2 The role of interactions in our study

In this study, we consider interactions for the following two purposes: we want to see whether they improve the
model, and whether the effects are similar in the subgroups studied (D. Commenges and H. Jacqmin-Gadda,
2015, p.58 [6]). For example, if we introduce the CCI x LOS interaction into a model, we’ll keep it provided
that, either it proves to improve the model, or the effects of CCI are different according to LOS. As the aim is
to observe main effects, in this study we will not attempt to interpret interactions, but simply introduce them
to consider their possible impact on the HR of main covariates.

Another important point to note is that, since we are referring to the literature, which hardly ever mentions
interaction effects in models (in the case of association search), and given our mathematical approach, we
focused on interaction terms that were significant and that we felt were truly relevant. Although it may not yet
be clear how to account for interactions and their effects on a model, the next chapter is devoted to testing the
fit of the model we’ve built. In particular, the following chapter contains an example illustrating the difference
in fit when the interaction term, CCI x LOS, is excluded versus when it is included.
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Chapter 7

Goodness of fit

The question raised in this chapter is the following: How can we test the reliability of our model?

Prior to Cox’s proportional-hazards model, logistic regression was commonly used to analyze survival data.
Goodness of fit in the case of logistic regression was tested by the Hosmer-Lemeshow test (D. Commenges and
H. Jacqmin-Gadda, 2015, p.77 [6]), which assesses whether or not the observed event rates match expected
event rates in subgroups of the model population. To test the overall adequacy of the model in the case of a
Cox regression, we would like to work with the same type of test as the Hosmer-Lemeshow test.

The most naive approach to apply the Hosmer-Lemeshow goodness-of-fit test to survival data would be to
simply use logistic regression with the event/censoring indicator as the binary outcome and then use the
Hosmer-Lemeshow test. The concern with using logistic regression is that the time to the event/censoring
is ignored completely. The results may be similar if the times to events are the same on average as the times
to censoring (or if the event is rare and has a short time of occurrence) but this is often not the case. Since
logistic regression has a different interest, it may not make sense to test the goodness-of-fit of the model using
the Hosmer-Lemeshow test.

The test that seem to be an equivalent to the Hosmer-Lemeshow goodness-of-fit test for logistic regression is
the Grgnnesby and Borgan test.

7.1 Grgnnesby and Borgan’s test

The Grgnnesby and Borgan test is based on martingale residuals which represent the difference between the
number of observed events and the model based estimate of the expected number of events (J.K. Grgnnesby
and O. Borgan, 1996 [11]).

The estimated martingale residual for subject i at time ¢ for the Cox [PH|] model is defined as,
t
3E(t) = Nift) = [ Vilu)exp(XT ) ddolu) i=1...m
0

where Ag(t) is the baseline cumulative intensity process, estimate by the Breslow estimator as follow,

A [ dN.(u)
o) = [ ST Yiw) exp(XT )

where N.(t) = Y0 Ni(t).

Consequently,

M; = N; — /0 h Y;(u) exp(XF3) dAg(u) (7.1)

= observed; — expected, (7.2)
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The observations are divided into G groups according to their estimated risk score #; = X B, an approach
similar to the one used by Hosmer and Lemeshow for logistic regression. The sum of the martingale residuals
is computed within each group. If the model assumptions hold, this sum should be close to zero.

Following May and Hosmer (S. May and D.W. Hosmer, 1998 |16, P.K. Andersen et al., 1993 [1]), we use the
counting process formulation of the model. We assume that an event can occur only once and that the process
is subject only to right censoring. Under the counting process approach, the observed number of events in each
group is approximately a Poisson variate with parameter estimated - under the hypothesis that the fitted model
is correct - by the model-based estimate of the expected number of events.

If the estimated expected number of events is large, then the following standardized statistic,

(observed, — expected,)

\/expected,

Zg = g=1,...,G

should be approximately distributed as a A/(0,1) variate.

Thus a p-value computed from standard normal distribution can be used to assess agreement between observed
and estimated expected within each group. The expected number of events for each group can be calculated by
subtracting the martingale residual for group g from the observed number of events for group g.

Therefore,

We used May and Hosmer’s method as the computation of the test statistic, since in the form introduced by
Grgnnesby and Borgan it requires calculating the covariance matrix which is somewhat tedious. This test re-
mains a simple and effective way to evaluate the viability of the model. However, care must be taken with the
choice of groups.

7.2 Risk score groups

The choice of groups is a widely debated subject, but in general, groups based on risk score deciles were chosen.
In our study, this choice was not the most appropriate and required further reflection. Indeed, the asymptotic
properties of all survival estimators depend on the existence of a sufficiently large expected number of events in
the g-th decile. May and Hosmer (S. May and D.W. Hosmer, 2004, [17]) show that the Grgnnesby and Borgan
test becomes too liberal when the number of events per decile is too low. Unfortunately this was the case in
our study, we didn’t have enough events by deciles.

To ensure a sufficient number of events per decile, we therefore considered several different approaches on the
recommendations of May and Hosmer and Demler et al. (O.V. Demler et al., 2015, [10]). First, we used the
collapsing strategy of Demler et al. starting with 10 deciles and collapsing the smaller deciles with their nearest
neighbors. This strategy makes it possible to use all the data while ensuring estimator convergence.

Still based on risk scores, a second approach aimed at constructing groups with equal numbers of events. Us-
ing May and Hosmer’s recommendations, we also constructed 10 groups, each containing the same number of
events. Since we have observed a total of around 30,000 events, it means that group 0 will contain around 3,000
rehospitalizations for patients with a low score, and group 9 will contain around 3,000 rehospitalizations for
patients with a high score.

We use these two group strategies to ensure that the test is powerful enough to detect a poor fit. Both meth-

ods provided similar results. However, the method using equal numbers of events per group seemed to detect
deviations more effectively. The implementing code is left in Appendix [B-4]

25



7.3 Application

The question of model fit arises in a general way, but in this example it makes more sense to illustrate the
difference between fit with and without significant interaction terms.

Let’s consider the model constructed from the covariates Age, Length of stay (LOS) and Charlson comorbidity
index (CCI). Without taking interaction terms into account, we found that only 70% of the p-values obtained
per group are greater than 0.05, see Table

Group Observed Expected Martingale Residuals Z p-value
0 3049 3157.0 -108.0 -1.92215  0.0546
1 3050 3144.5 -94.5 -1.68522  0.0919
2 3050 3000.5 49.5 0.90367  0.3662
3 3050 3058.5 -8.5 -0.15370  0.8778
4 3050 3031.5 18.5 0.33600  0.7369
5 3050 3042.5 7.5 0.13597  0.8918
6 3050 2926.0 124.0 2.29237  0.0219
7 3050 2943.5 106.5 1.96299  0.0497
8 3050 2965.5 84.5 1.55170  0.1207
9 3041 3214.0 -173.0 -3.05157  0.0022

Table 7.1: Test results of the model without interaction terms

However, we would like to see if by considering the interaction terms we are able to avoid rejecting the null
hypothesis for at least one or two more groups. When we add interaction terms between CCI and LOS, we
obtained the following results.

Group Observed Expected Martingale Residuals Z p-value
0 3049 3100.5 -51.5 -0.92489  0.3550
1 3050 3088.5 -38.5 -0.69277  0.4885
2 3050 2972.5 77.5 1.42148  0.1552
3 3050 3082.0 -32.0 -0.57641  0.5643
4 3050 3060.0 -10.0 -0.18078  0.8565
5 3050 3111.5 -61.5 -1.10253  0.2702
6 3050 2979.0 71.0 1.30084  0.1933
7 3050 2988.0 62.0 1.13423  0.2567
8 3050 3007.5 42.5 0.77497  0.4383
9 3041 3094.5 -53.5 -0.96174  0.3362

Table 7.2: Test results of the model with interaction terms

The Z statistics and p-values in Table support agreement between the observed and estimated expected
number of rehospitalizations, since we didn’t reject null hypothesis in each group, confirming that the Cox
model with interaction terms seems to fit well the data.
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Chapter 8

(Generalized linear mixed models

In a classical model, errors are assumed to be independent and identically distributed according to a normal
distribution. However, this is not the case when data are structured at multiple levels, typically when certain
individuals share a common environment that is likely to influence the outcome of interest. Examples include
students in a school, employees in a company, patients in a hospital, etc. Multilevel models are designed to
address questions raised by such data. They allow to detect such heterogeneity, to quantify it, and/or simply
to obtain unbiased estimates of the impact of some individual variables, the latter being the focus in this study.

Analysis of discrete data taking into account cluster correlation effects can be performed using Generalized
Linear Mixed Models (GLMME). These are built on the same principle as Linear Mixed Models (LMME)
and the same root as Generalized Linear Models (GLME).

8.1 Fixed and random effects

Let’s start with a quick review of what is considered a fixed and a random effect. The definition of fixed and
random effects is a matter of debate in the literature. There are several possible definitions of fixed and random
effects and we will present here the ones that seem to be the most coherent with the project and the simplest
to understand and apply.

e Fixed effect (deterministic process): When a covariate has a fixed effect, the data come from all
possible levels of qualitative covariate or from a quantitative covariate. The aim is to draw conclusions
about the levels of the qualitative covariate or the relationship between the quantitative covariate and
the outcome. As an example, let’s compare the rehospitalization risks of patients who have undergone 3
different types of medical surgical procedures. The type of medical procedure is a fixed effect (all three
types have been sampled) and we wish to draw conclusions about the effects of these three specific types
of medical procedures.

e Random effect (stochastic process): Random effect variables are also called random factors because
they are only categorical variables. A random effect occurs when individual observations are naturally
grouped into larger clusters. These are usually grouping factors whose influence we want to control in the
model, but whose specific effect on the outcome we are not interested in. Take, for instance, the purpose
of this study: rehospitalization of patients hospitalized due to prostate surgery in France (between 2012
and 2014). Patients from the same geographic code may have some correlation with each other because
they share the same socio-environmental conditions. Although we are not interested in the specific effect
of each geographic code, we can include random effects at the geographical level to account for different
sources of variability.

Given the binary nature of our outcome, it is a generalized linear mixed model (with a logit link) that seem
suitable. Conditional on random effects, the outcome follows a generalized linear model and the random effects
are included in the set of covariates.
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8.2 General structure of the model

8.2.1 From GLMs to GLMMS

Denote y the outcome and X = (1|X3]...|X,) the design matrix of p covariates, a generalized linear model is
defined by:

- the outcome distribution must belong to the exponential family.

- a combination of covariates X and parameters 3.

- a link function connecting p = E(y) to the linear predictor.

Let y; be the outcome observation for patient ¢, ¢ = 1,...,n. The expectation of a basic GLM was,
E(y:) = g~ (X B).

Following McCulloch (C.E. McCulloch, 2005, p.220-221 [18]), random effects are incorporated by enlarging the
model as follows,

E(y;|b) = g~ (X{ B + Zib)

where g(e) is the link function, X; is the ith row vector of fixed effects covariates of dimension p, g is the
p-vector of parameter for fixed effects; to that specification we add Z;, which is the ¢th row vector fo random
effects of dimension g < p and b a g-vector of identically and independently distributed random effects.

As with GLMs, when constructing a GLMM we are interested in odds ratios and their confidence intervals. Yet
their significance is more nuanced in the presence of mixed effects. In classical logistic regression, odds ratios
are the odds ratios expected if all other covariates are fixed. The same is true for mixed effects logistic models,
with the addition that holding everything else fixed includes holding the random effect fixed. In other words,
the odds ratio here is the conditional odds ratio for a person with constant age and length of stay, as well as
for a person with either the same geographical code, or geographical codes with identical random effects.

While this may make sense, when there is high variability between geographical codes, the relative impact of
fixed effects may be small. In this case, it is useful to examine the effects at different levels of the random

effects, or to obtain the average fixed effects by marginalizing the random effects.

We'll look at how to get this information using the GLIMMIX procedure in section 8.3. But first, let’s specify
these differences a little more by pointing out the construction of a GLMM with a logit link.
8.2.2 Multilevel logistic regression

In the case of a binary outcome, a logit link is introduced, and considering that the distribution of random
effects is modeled by a Gaussian distribution, N'(0,07), the model can be expressed as follows (D. Commenges
and H. Jacqmin-Gadda, 2015, p.180 [6]).

logit(P(y; = 11b)) = X B+ ZI'b

And so,

exp(X['B + Z{'b)
1+exp(X] B+ Zl'b)

P(y; = 1]b) = (8.1)
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Given this modeEI specification, the expectation of y can be written as follows.

=K
=E[Eg~ ' (X]"B+ 2]b)]

Having a log link, g(u) = log(u) and g~ !(z) = exp(x), thus we have,

E(y,) = E [E(exp(X] 8+ Z7b))]
— exp(X] B)E [exp(27b)] (8.3)

In general, relation (8.2) couldn’t be more simplified, but further explanations are given in McCulloch (C.E.
McCulloch, 2005, p.223 [18]). This equation illustrates mathematically the differences explained in the previous
section: where in logistic regression the expectation of the outcome is explained by exp(X7 ), here variations
are added.

8.3 GLIMMIX Procedure

SAS offers the GLIMMIX procedure for fitting generalized linear mixed models (GLMMs). The GLIMMIX
procedure enables to specify a generalized linear mixed model and perform confirmatory inference in such mod-
els. The syntax is somewhat similar to that of the PHREG procedure and includes the CLASS, MODEL and
RANDOM statements, which are the main features used in this study.

The procedure syntax is as follows.

PROC GLIMMIX DATA=Patients;
CLASS CCI (ref='0');
MODEL RH30 (event='1') = Age LOS CCI Rural Public
/ dist=binary link=logit oddsratio solution;
RANDOM intercept / subject=CodeGeo;
RUN;

We specify the option ’dist=binary’ in the MODEL instruction, in order to specify the logit link function. By
default, for a binary outcome, the logit link is chosen by the GLIMMIX procedure. The 'oddsratio’ option will
also be specified to return the odds ratio produced by the model for each covariate. The RANDOM instruc-
tion states that the linear predictor contains an intercept term that varies randomly at the level of the cluster
effect. In other words, a random intercept is drawn separately and independently for each cluster in the study.
The ’solution’ option is used to display fixed-effects parameter estimates (their construction is detailed in the
dedicated SAS help - GLIMMIX MODEL Statement).

SAS output gives us information about the model, class level and number of observations, dimensions, opti-
mization, iteration and convergence status, tests of fixed effects and additional information on the estimation,
we won’t cover the details of this here, but the final message in the journal, is importantﬂ

Convergence criterion (PCONV=1.11022E-8) satisfied.

It indicates that the iterative algorithm of the estimation process was able to settle on an answer.

Note: For a model containing random effects, the GLIMMIX procedure, by default, estimates the parameters
by applying pseudo-likelihood techniques as in Breslow and Clayton (N. E. Breslow and D. G. Clayton, 1993

2)-

1 Model with ¢ = 1 and Z;; = 1 leads back to the special case of logistic regression.
2 This information is also present in the PHREG procedure.
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Chapter 9

Results

9.1 Descriptive analysis of individual and environmental factors

The characteristics of our study population are reported in Table and Table [0.2] which also shows the
distribution of each factor between rehospitalized and non-rehospitalized patients. A total of 270473 patients
who underwent prostate surgery between January 2012 and November 2014 met the inclusion criteria, 11.27%
of them, i.e. 30490 patients, were rehospitalized within 30 days. All factors, both environmental and individual,
were found to be statistically associated with the risk of 30-day rehospitalization.

9.1.1 Individual factors

The results of the univariate tests on individual factors are summarized in the Table page Because the
quantitative variables did not meet the assumptions of the Cox PH model, they were coded as categorical vari-
ables. As mentioned above, the Elixhauser index was correlated with the other covariates. We therefore chose
to study only 10 of the Elixhauser comorbidity groups as specified in section [3:2 The Elixhauser comorbidity
groups selected (via a classification tree), the results of the associated univariate analyses and the verification
of model assumptions are left in Appendix [C]

9.1.1.1 Overall population

The median age of patients was 69 years and the median length of stay was 4 days. In most cases (78.03%),
the surgical procedure was classified as "Anesthesia" or "Surgery". Cancers classified as "High Rank" were
diagnosed less frequently in overall patients (26.39%) than cancers classified as "Very High Rank" (36.86%)
or "Moderate Rank" (36.75%). The comorbidity, Charlson and Elixhauser indices were adjusted by excluding
pathologies identified at inclusion, in order not to bias the study. The majority of patients had no comorbidity
with a Charlson comorbidity score of 0 (78.27%), the rest being split into patients with a score exactly equal
to 1 (12.61%) and patients with a score of 2 or more (9.12%). Regarding Elixhauser Index, the majority of
patients in the study had less than 2 comorbidities (81.00%).

9.1.1.2 Comparison between rehospitalized and non-rehospitalized patients

Among the 270473 patients included, 11.27% were rehospitalized within 30 days. These rehospitalized patients
were significantly (p<0.0001) older (median age of 71, 34% of patients over 75 years) than non-rehospitalized
patients (median age of 68, 24.87% of patients over 75 years). The length of stay was also significantly (p<0.0001)
higher for patients rehospitalized (59,58% of patients with a LOS over 4 days) compared to patients non-
rehospitalized (43,85% of patients with a LOS over 4 days). Concerning medical procedures, rehospitalized
patients received significantly less technical procedure during the initial hospitalization than non-rehospitalized
patients (12,19% vs 23,21%, p<0.0001).
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Within rehospitalized patients, there are notable differences in cancer rank, especially within the high and
very high rank levels. In fact, rehospitalized patients were less diagnosed with benign or indeterminate tumors
have (24.17%) than non-rehospitalized patients (26.67%). Conversely, rehospitalized patients were more likely
to be diagnosed with malignant tumors (39.21%) than non rehospitalized patients (36.56%). Although this
variable is statistically significant, from a clinical point of view, this difference is not marked. This suggests
that it might lack sufficient discriminatory power against other factors, potentially making it less suitable for
inclusion in a model. Concerning comorbidity scores, rehopitalized patients had significantly higher score than
non-rehospitalized patients, especially for a score over 2. Indeed, regarding the CCI, the rate of a score greater
than 2 was twice as high in rehospitalised patients (15.95%) as in non-rehospitalised patients (8.25%). The
difference was less for the Elixhauser score, but it was still significant (27.90% for rehospitalized patients vs
17.87%, for non-rehospitalized patients).

Overall No Rehospitalization -value
Population Rehospitalization p p
Number (%) 270473 239983 (88.73) 30490 (11.27)

Individual Factors

Age (years)

Mean (std) 69.27 + 9.25 69.03 &+ 9.15 71.03 + 9.82 < 0.0001
Median (IQR) 69 (63-76) 68 (63-75) 71 (64-78)

< 75 years 200413 (74.10) 180300 (75.13) 20113 (65.97) < 0.0001
> 75 years 70060 (25.90) 59683 (24.87) 10377 (34.03)

Length of stay (days)

Mean (std) 4.89 =+ 5.05 4.69 + 4.71 6.50 + 6.20 < 0.0001
Median (IQR) 4 (2-7) 4 (2-6) 5 (4-8)

< 4 days 147075 (54.38) 134752 (56.15) 12323 (40.42) < 0.0001
> 4 days 123398 (45.62) 105231 (43.85) 18167 (59.58)

Medical Procedure < 0.0001
Technical 59429 (21.97) 55712 (23.21) 3717 (12.19)
Anesthesia/Surgery 211044 (78.03) 184271 (76.79) 26773 (87.81)

Cancer Rank < 0.0001
Moderate rank() 99406 (36.75) 88242 (36.77) 11164 (36.62)

High rank(® 71379 (26.39) 64011 (26.67) 7368 (24.17)
Very high rank(®) 99688 (36.86) 87730 (36.56) 11958 (39.21)
Charlson Comorbidity Index(®) < 0.0001
0 211706 (78.27) 190767 (79.49) 20939 (68.67)
1 34110 (12.61) 29420 (12.26) 4690 (15.38)
> 2 24657 (9.12) 19796 (8.25) 4861 (15.95)
Elixhauser Index(® < 0.0001

<2 219093 (81.00)
> 2 51380 (19.00)

197110 (82.13)
42873 (17.87)

21983 (72.10)
8507 (27.90)

(DBenign Hyperplasia or Low Grade Dysplasia of the Prostate, (?In situ, Benign or Unpredictable tumors,
(3)Malignant tumors, (Y Charlson comorbidity index excl. inclusion conditions, (®)Elixhauser index excl. inclu-
sion conditions.

Table 9.1: Individual factors associated with 30-day rehospitalization
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9.1.2 Environmental factors

The results of the distribution and univariate tests on the environmental factors are summarized in table [9.2]
page The quantitative variable French Deprivation index (FDep|) was considered in a quantitative and a
categorical form.

Overall No Rehospitalization alue
Population Rehospitalization P z p-v
Number (%) 270473 239983 (88.73) 30490 (11.27)

Environmental Factors

Urban/Rural status < 0.0001
Urban 138188 (55.55) 122869 (55.73) 15319 (54.17)
Rural 110575 (44.45) 97615 (44.27) 12960 (45.83)

French Deprivation index < 0.0001
Mean (std) -0.1406 + 1.4061 -0.1552 + 1.4124 -0.0271 £ 1.3524
Median (IQR) 0.04 (-0.85-0.76) 0.03 (-0.87-0.75) 0.10 (-0.71-0.86)
< P 51006 (19.75) 45898 (20.06) 5108 (17.38) < 0.0001
[Pao; Paol 52393 (20.29) 46614 (20.37) 5779 (19.66) 0.0055
[Pyo; Peol 51363 (19.99) 45688 (19.96) 5948 (20.23) 0.1988
[Pso; Psol 51684 (20.01) 45603 (19.92) 6081 (20.69) 0.0023
> Pyo 51557 (19.96) 45077 (19.69) 6480 (22.04) < 0.0001

Private/Public status < 0.0001

Private

Public

198884 (73.53)
71589 (26.47)

178091 (74.63)
60892 (25.37)

19793 (64.92)
10697 (35.08)

(1) Pyg, Pyo, Pso and Py are the first (-1.1098), second (-0.2290), third (0.2946) and fourth (0.9379) quintiles.

Table 9.2: Environmental factors associated with 30-day rehospitalization

9.1.2.1 Overall population

In terms of environmental factors, the distribution between urban and rural residence is fairly even, with more
patients living in urban zones (55.55%) than in rural zones (44.45%). The deprivation index was slightly below
0 (-0.14) on average, but the median remained well centered at 0 (0.04), indicating a fairly good distribution
between economically favored and deprived areas. The majority of hospitalizations for the surgical procedure
were carried out in private hospitals (73.53%).

9.1.2.2 Comparison between rehospitalized and non-rehospitalized patients

The proportion of rehospitalized patients living in rural areas is slightly higher (45.83%) compared to those
not rehospitalized (44.27%) at this point, the difference is statistical but not clinically significant. Regarding
the deprivation index, rehospitalized patients have higher values: a mean of -0.03 and a median of 0.10 for
patients rehospitalized within 30 days, whereas the mean is -0.16 and the median is 0.03 for non-rehospitalized
patients. A similar pattern is seen in the quintile analysis. In the lowest quintile (below Py), rehospitalized
patients constitute a smaller proportion (17.38%) than non-rehospitalized patients (20.05%). Conversely, in the
highest quintile (> Pgg), more patients experience rehospitalization (22.04%) compared to non-rehospitalization
(19.69%).
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We will return to these findings later in the section dedicated to the analysis of environmental factors. Finally, a
clear pattern emerges indicating that rehospitalized patients were significantly more often admitted for prostate
surgery in the public sector (35.08%) compared to non-rehospitalized patients (25.37%).

9.2 Multivariate analysis with individual factors

For the analysis of individual factors, Cox PH models were built, with prior verification of the assumptions of
loglinearity and proportional-hazards, as well as the absence of inter-covariate correlation.

9.2.1 Selected covariates

After an in-depth study of correlation and interaction using only the methods presented in Part [T several
models were considered. Several issues arose, the first of which was cancer rank, which did not provide sufficient
information and did not fit the Cox PH model. We decided not to include it in the model after several attempts
at categorization and stratification proved inconclusive. The second relates to the medical procedure; the type
of surgery undergone was strongly correlated with length of stay. Although length of stay is important in our
study, we opted to endeavor fitting models based on medical procedures rather than length of stay. Unfortu-
nately, these models showed significantly lower reliability in the Grgnnesby and Borgan tests. We therefore did
not retain a model with the medical procedure.

Finally, two multivariate Cox PH models based on individual factors were selected. Since both comorbidity
indices cannot be included in the same model (even considering only some of the Elixhauser comorbidity groups,
due to correlations), we considered one model based on the Charlson comorbidity index and one based on Elix-
hauser groups. Grgnnesby and Borgan’s tests were carried out, after which the inclusion of certain interactions
showed to provide more reliable models.

The first model contains the covariates Age, Length of stay and Charlson comorbidity index, plus an interaction
term between Charlson comorbidity index and LOS. This interaction was discussed in Chapter [6}

The second model contains the covariates Age, Length of stay, and the following 10 Elixhauser comorbidity
groups; Renal Failure, Solid Tumor without Metastasis, Metastatic Cancer, Congestive Heart Failure, Hyper-
tension, Uncomplicated, Fluid and Electrolyte Disorders, Valvular Disease, Chronic Pulmonary Disease, Blood
Loss Anemia and Coagulopathy. We also introduced two interaction terms, one between the Renal Failure group
and Age and the other between the Solid Tumor without Metastasis group and Age.

9.2.2 Association of individual factors with the risk of rehospitalization

Table [9.3] shows the analysis of individual factors associated with the risk of rehospitalization by Cox’s pro-
portional hazards with hazard ratio (HR) and 95% confidence interval (CI), the p-value of covariates is also given.

In Model 1, Age was associated with the risk of rehospitalization, with patient less aged 75 years or less as
the reference (HR=1), patients aged over 75 have a 31.4% higher risk of rehospitalization. Length of stay also
proved to be a discriminating factor, with a length of stay of less than 4 days as the reference, patients with
a length of stay of more than 4 days were at greater risk, with the model indicating a 68.0% higher risk of
rehospitalization than the reference. The Charlson comorbidity index also proved to be significantly associated
with the risk of rehospitalisation. Taking patients at level 0 as a reference, we find that those at level 1 already
have a 26.6% greater risk of rehospitalisation, and when we go beyond level 2 the risk rises to 76.2%.

Age and LOS appear to have the same effect in Model 2, which is based on independent Elixhauser groups
of comorbidities. The comorbidity groups that appear to be most associated with the risk of rehospitalisation
are Renal Failure (60.4%), Metastatic Cancer (50.1%) and Solid Tumour without Metastasis (60.2%), which
increase the risk of rehospitalisation by more than 50%.
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Model 1M Model 22

HR 95% CI p-value HR 95% CI p-value

Age (years)

< 75 years ref ref ref ref ref ref

> 75 years 1.314 1.282-1.346  <0.0001 1.313 1.281-1.345  <0.0001
Length of stay (days)

< 4 days ref ref ref ref ref ref

> 4 days 1.680 1.641-1.719  <0.0001 1.672 1.633-1.711  <0.0001
Charlson Comorbidity Index(®)

0 ref ref ref - - -

1 1.266 1.226-1.307 <0.0001 - - -

> 2 1.762 1.706-1.819  <0.0001 - - -
Elixhauser comorbidity groups®

Renal Failure - - - 1.604 1.509-1.706  <0.0001

Solid Tumor without Metastasis - - - 1.501 1.430-1.575  <0.0001

Metastatic Cancer - - - 1.602 1.485-1.729  <0.0001

Congestive Heart Failure - - - 1.395 1.312-1.484  <0.0001

Hypertension Uncomplicated - - - 1.032 1.006-1.058 0.0138

Fluid and Electrolyte Disorders - - - 1.190 1.105-1.282  <0.0001

Valvular Disease - - - 1.441 1.335-1.555  <0.0001

Chronic Pulmonary Disease - - - 1.146 1.087-1.208  <0.0001

Blood Loss Anemia - - - 1.399 1.257-1.558  <0.0001

Coagulopathy - - - 1.470 1.322-1.634  <0.0001

(1) Adjustment with consideration of CCI x LOS interaction terms (HRs given in Appendix|C.4), (*) Adjustment
with consideration of Renal Failure x Age and Solid Tumor without Metastasis x Age interaction terms (HRs
given in Appendix , (3)Charlson comorbidity index excl. inclusion conditions, (¥ The 10 most relevant
comorbidity groups.

Table 9.3: Multivariate models predicting the risk of 30-day rehospitalization by Cox’s proportional-hazards

9.3 Multilevel analysis with environmental factors
9.3.1 Selected covariates

The GLMMs models were built using the same covariates (and interaction terms) as the Cox models, only
environmental factors were added. As the models built using GLMMSs gave similar results to those obtained
without considering environmental factors, only the results from the models based on the Charlson comorbidity
index are presented in this section (the tables based on Elixhauser comorbidity groups are left in Appendix
. When it comes to asssumptions, only loglinearity is required for GLMMs. For qualitative variables, the
use of the CLASS statement has alleviated any problems. For quantitative variables, only the French deprivation
index is concerns, the results and their interpretation are much clearer with quintile splitting, so this is the
form we retained. New correlations between covariates were found, involving Urban/Rural household status
and FDep. We therefore built two separate models, Model 3 containing the covariates Age, Length of stay,
Charlson Comorbidity Index, plus the interaction term between Charlson score and length of stay, FDep and
Private/Public status. Model 4 contains the same covariates, but replacing the deprivation index, FDep, by
Urban/Rural status.
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9.3.2 Association of individual and environmental factors with the risk of rehos-
pitalization

The results obtained for both models are presented in Table [0.4] page [35]The results of the analyses of the
individual and environmental factors associated with the risk of rehospitalization are presented as odds ratio
(OR), 95% confidence interval (CI) of the odds ratio, and p-value indicating the significance of each covariate
in the risk of 30-day rehospitalization.

Model 3 Model 4
OR 95% CI1 p-value OR 95% CI p-value
Age (years)
< 75 years ref ref ref ref ref ref
> 75 years 1.348 1.312-1.384  <0.0001 1.352 1.316-1.390  <0.0001
Length of stay (days)
< 4 days ref ref ref ref ref ref
> 4 days 1.642 1.582-1.705  <0.0001 1.626 1.564-1.690  <0.0001
Charlson Comorbidity Index(?)
0 ref ref ref ref ref ref
1 1.283 1.238-1.329  <0.0001 1.277 1.232-1.324  <0.0001
> 2 1.837 1.768-1.909  <0.0001 1.826 1.755-1.899  <0.0001
Urban/Rural status
Urban - - - ref ref ref
Rural - - - 1.040 1.007-1.074 0.0159
French Deprivation index
< Py 0.889 0.844-0.937 < 0.0001 - - -
[P2o; Puo 0.965 0.917-1.016  0.1721 - - .
[Pa0; Poo[ ref ref ref . - .
[Pso; Psol 1.002 0.954-1.052 0.9464 - - -
> Pyo 1.048 0.999-1.099 0.0574 - - -
Private/Public status
Private ref ref ref ref ref ref
Public 1.480 1.440-1.520  <0.0001 1.483 1.443-1.525  <0.0001

(1) Adjustment with consideration of CCI x LOS interaction terms, () Charlson comorbidity index excl. inclusion
conditions, ®) Pyg, Pyg, Pso and Py are the first (-1.1098), second (-0.2290), third (0.2946) and fourth (0.9379)
quintiles.

Table 9.4: Multivariate models predicting the risk of 30-day rehospitalization by multilevel logistic regression
(Charlson comorbidity index version)

The results point in the same direction, but with an even higher assessed risk (82.6-83.7%) for patients with a
Charlson score greater than 2, than the risk assessed using the Cox PH model.

With regard to environmental factors, measuring their effect was not the main issue; we simply wanted to take
account of their impact on the analyses; nevertheless, we found that the derivation index shows that patients
living in a deprived area have a lower risk (11.1%) of rehospitalization than patients living in areas considered
to be average socio-economic zones. In addition, patients who underwent surgery in a public hospital had a
48% higher risk of 30-day rehospitalization than patients who underwent surgery in a private hospital.
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Chapter 10

Conclusion and perspectives

The aim of the project was to study the impact of individual and environmental factors on the risk of 30-day
rehospitalization, taking into account not only age and length of stay, but also a number of individual clinical
factors, as well as socio-economic factors.

10.1 Conclusion

Drawing from the outcomes of these analyses, we can begin to identify the key factors that contribute signifi-
cantly to the risk of 30-day rehospitalization.

Looking at age, it is reasonable to observe that older patients have an increased risk of 30-day rehospitalization.
This observation is supported by the results of the study, which show a positive correlation for patients aged
75 years and older.

One of the main factors considered was length of stay, a variable that provided a significant amount of infor-
mation in the models but was complex to interpret. As with age, it seemed likely that the longer the length of
stay, the stronger the impact of the surgery on the patient and the higher the risk of 30-day rehospitalization.
This study highlighted this by showing that a length of stay over 4 days was positively associated with the risk
of rehospitalization.

The influence of comorbidity indices is noteworthy, particularly as the severity of certain medical conditions
emerges as a significant risk factor, as is the case with the Charlson index. The analyses revealed a robust
positive correlation between a Charlson score of 2 or higher and the likelihood of 30-day rehospitalization.

In addition, by evaluating the Elixhauser comorbidity groups independently, we were able to identify comor-
bidity groups that had a stronger impact on the risk of rehospitalization than others. Among these, 3 groups
- Renal Failure, Metastatic Cancer and Solid Tumor without Metastasis - showed strong positive associations
with the risk of rehospitalization.

The consideration of environmental factors confirmed the previously found results, attributing a stronger impact
to patients with a Charlson score of 2 or higher. The FDep findings suggest a trend towards non-rehospitalization
in deprived areas and increased rehospitalization in advantaged areas based on the data set. This may be
influenced by factors such as the prevalence of patients undergoing prostate surgery in private hospitals, which
may be less accessible in deprived areas. They also raise another concern, as the private or public status of the
hospital where the surgery was done, seems to play a role in the risk of rehospitalization within 30 days. This
difference between public and private status can be due to a number of factors, from higher costs in private
hospitals to the fact that public hospitals tend to receive more serious cases.
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10.2 Strength and limitation

We worked almost exclusively with PMSI databases for this study. We also used the INSEE open access
database to reconstitute environmental factors, but no additional patient information was available. Working
on the PMSI has a lot of strengths: we can observe a large number of patients, and we have access to all public
and private hospitalizations, which means that we can identify rehospitalizations of the same patient. We are
able to retrieve a large amount of patient characteristics and the main causes of hospitalization.

However, we have very limited information about other factors that may affect a patient’s health, such as smok-
ing or alcoholism that are underestimated in the PMSI database since they do not have a direct impact on the
patient care. In addition, we only observe hospital admissions, so we don’t know each patient’s care pathway,
whether that includes out-of-hospital care including treatments.

For environmental factors, we only have an aggregated code, so reconstitution is very limited, with missing
data. Our ability to take any environmental impact into account is therefore limited.

Finally, the study is a first line of research carried out without the active participation of a clinician, possibly
implying shortcomings in terms of clinical factors, such as the cancer ranks and types of procedure undergone,
which could possibly have been retained in the study.

10.3 Possible future research line

First of all, as explained previously, GLMMs built with a logit link function (i.e., multilevel logistic regression)
can be considered for this type of study, but their weakness is that they don’t take into account right censoring.
It could therefore be interesting to work on models that take into account both censoring and random effects,
for example with so-called frailty models (Commenges and Jacqmin-Gadda, 2015, p.247 [6]). Frailty models
are Cox proportional hazard models with mixed effects; the term frailty model is used to denote a survival
regression model (typically a Cox proportional-hazards model) that incorporates random effects.

The second point is to consider out-of-hospital data and the ambulatory aspect. The aim would be to include
the type of care path taken by patients, between their discharge from hospital (n) and their eventual readmission
(n + 1), to the study. In this way, we could try to jointly evaluate hospital and primary care factors, in order
to identify the determinants that are relevant to both sectors. These kind of data are contained in the Systéme
national inter-régimes de l’assurance maladie . In addition to data, includes data
on the consumption of ambulatory care (i.e. all reimbursed services, with detailed coding of the service); on the
consumption of hospital care, in particular hospital ambulatory activity, as well as drugs and medical supplies
billed "in addition" to fixed-rate charges; and also on the pathologies treated.

Finally, even if the type of medical procedure was not retained in this study, it still seems that a reconsideration
should be made. Especially by working on the categorization of the variable according to the opinion of a clin-
ician, based on his knowledge of the most frequent and/or most burdensome/impactful surgeries for patients.
As the database corresponds to CCAM codes, it is difficult to propose other categorizations without the opinion
of a clinician.

Ultimately, the combination of these points could lead to a better understanding of the individual and socio-
economic factors associated with patient re-hospitalization. This would enable to guide better patient follow-up
according to the specific patient characteristics that proved to be discriminating in this study, but also from a
more socio-economic point of view.
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Chapter 11

First step into the study

11.1 Lack of clinical knowledge

The first steps in the study were the trickiest, because with an extremely mathematical eye, the factors to be
considered in such a medical study seemed unclear. The literature review shed light on a number of issues,
but most prostate studies were carried out using data from dedicated centers, and designed to study a spe-
cific procedure (e.g. Robot-assisted radical prostatectomy (RARP) [20], Transurethral resection of the prostate
(TURP) [21]). The literature on the use of PMSI data to study the risk of rehospitalization after prostate
surgery remains relatively poor. In addition, the proposal included important factors to consider, but was not
intended to be an exhaustive list. Specifically, cancer rank and medical procedures were variables beyond those
specified in the protocol. We chose to include these in the study because they seemed relevant. Although the
univariate results were significant, in multivariate analysis things got more complicated (e.g., correlation, PH
assumption not respected, significant results for Grgnnesby and Borgan).

11.2 Model building

Another major challenge of this study was to cope with the conditions for applying the model, whether in terms
of correlations or assumptions of a Cox PH model.

11.2.1 Correlations

As previously mentioned, inter-covariate correlations can introduce substantial bias to the study. Notably, the
Elixhauser index exhibited correlations with all covariates. A solution emerged during the initial project pre-
sentation, a member of the jury, Hervé Cardot, suggested the utilization of a classification system to identify the
most influential factors. While classification was initially impractical because we had to select the information
to be reconstructed, a workaround emerged to address the correlation problems associated with the Elixhauser
index. The idea was to work with the underlying comorbidity groups instead of the index itself. In essence,
considering the 31 groups independently, and then define which of them are the most relevant; this is where
classification comes into its own. To streamline the process without sacrificing information, we opted to focus
on 10 uncorrelated groups. The objective was twofold: addressing the incorporation of the Elixhauser index, a
frequently cited index in literature, and conducting a correlation study involving 10 x 10 variables.

11.2.2 Assumptions

The assumptions required to apply a Cox PH model are essential, and their verification is mandatory. There
are many different methods in the literature, and we have chosen to consider two for each assumption and type
of variable. This choice to consider several methods is first of all due to their power - some methods are not
sensitive enough - and the fact that the method based on martingale residuals offered by PHREG procedure is
extremely time-consuming. Indeed, we worked with 270473 patients, implying that running a procedure with the
ASSESS statement only on age covariate took 47 hours. So we had to demonstrate very good time management
with the entire department, which is by no means easy. To overcome this situation, and to be able to move
forward despite the fact that the results have not yet been obtained, we spent a lot of time implementing other
methods and mathematically proving their relevance.
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Aside from the concerns over the methods, there was one variable that particularly bugged us, this variable
was age. The results presented in section [£.4.2.2] and section £.4.3] showed us that including age as such wasn’t
conceivable since it assumes neither loglinearity nor hazards proportionality. Given the nature of the study,
we chose to categorize it. A first study was carried out on loglinearity, dividing the variable using the Figure
(cutpoints version): < 65, 65 to 74 and 75 or older. As can be seen in Figure this categorisation
did not meet the loglinearity assumption. After a few trials, we found a suitable categorization according to
rehospitalization trends, we defined the following intervals (trends version): < 70, 70 to 79 and 80 or older.

Beta Beta
0.6

T T T 1
60 70 80 60 70 80 80
Age

Age
Figure 11.1: Beta estimates against 3-level age covari-  Figure 11.2: Beta estimates against 3-level age covari-
ate (cutpoints version). ate (trends version).

Compared with Figures and we can clearly observe that the 3-level (trends version) categorization
(Figure seems better suited to comply with loglinearity assumption. All that remained was to check
hazards proportionality. We realized that the categorization previously found was inadequate since the 3-level
categorization curves represented in Figure [I1.3] are found to intersect, representing a violation of the [PH] as-
sumption. This finding made our previous work nugatory. Attempts were made to define another three-level
categorisation, but none of them agreed with the two hypotheses. We decided to consider a 2-level categoriza-
tion using the median, which was also unsuitable. As a last solution, we studied the trends in rehospitalization
in greater depth. We noticed that the trend changed at the 75-year threshold, which is why we chose this cut.

log[-log(Survival Probability)]
log[-log(Survival Probability)]

T T T T T T
1.0 15 20 25 30 35 1.0 15 20 25 3.0 35

log(Delay) log(Delay)

\Age —o— +80years —=—— 70 to 79years —o— <70 years| \Age — o ==75years — o > 76 years ‘

Figure 11.3: Log of negative survivor log estimated for =~ Figure 11.4: Log of negative survivor log estimated for
3-level categorization of Age covariate 2-level categorization of Age covariate

The curves for 2-level covariate age, in Figure[I1.4] look roughly parallel, and by working with a binary covariate
log-linearity is no longer an issue; therefore this choice seems to be the right one. To ensure this, we introduced
an interaction between time and this covariate, the details of which are given in Appendix This work was
particularly tedious, but necessary if we wanted to include age covariate in a Cox PH model. Finally, the 2-level
categorization preserves the significance of the covariate while simplifying the interpretation of the hazard ratio.
We have therefore succeeded in finding the best compromise.
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Chapter 12

Methods not proposed by SAS

12.1 Cramér’s V Heatmap

It’s easy enough to obtain Cramér’s V with SAS, we just have to run the FREQ procedure with the chisq’
option as mentioned for assumption testing with Pearson’s chi-square test statistic. Indeed, Cramér’s V is one
of the outputs of this procedure. However, the output of this procedure is difficult to manage and does not
allow you to print only the Cramér’s V. SAS output prints test results for several different statistics, so when
you need to test the correlation between each covariate 2 by 2 for more than a dozen covariates, it becomes
extremely tedious to go through all the output. As mentionned in the section[b] some time was spent creating a
macro to build a Camér’s V matrix on the same principle as the Pearson Correlation matrix. We wanted to keep
the variable names, their labels and obtain a symmetrical matrix, while at the same time having a code that
could run fairly efficiently given the large number of patients included in the study. The macro was carefully
designed to retrieve only the ’chisq’ output from the FREQ procedure and store it in an array. These arrays
were then merged successively.

Given that our academic background was limited to a simple introduction to SAS, this part of creating the
macro took a little time to set up, but was definitely worth it. Furthermore, the combined use of IML procedure
to build a heatmap makes it possible to visualize all correlations extremely efficiently. Regarding the IML pro-
cedure, the code remains relatively simple, we’ve just adapted the procedure’s functions. This challenge helped
us be more efficient and will be useful in future studies.

12.2 Grgnnesby and Borgan

In epidemiological research, it’s very common to use Hosmer-Lemeshow when fitting a logistic regression. This
is a crucial step in ensuring that the model is appropriate and especially high quality. However, when using Cox
PH model, the ground is extremely unclear. Most Pubmed publications, articles and open-access courses on
Cox regression check the viability of the model based exclusively on the assumptions of its construction. Stud-
ies carried out on SAS focus almost entirely on the ASSESS tool of the PHREG procedure, which ultimately
doesn’t give us as much information on the adequacy of the model. References to a method similar to Hosmer-
Lemeshow are scarce, and it was only through in-depth exploration of the Hosmer-Lemeshow approach and
identification of a corresponding adaptation for Cox regression that Grgnnesby and Borgan’s method emerged
as a viable implementation. This feasibility was facilitated by the guidance provided by May and Hosmer (May
and Hosmer, 1998 [16]).

It’s hard to imagine working without such a tool, as it’s useful for confirming covariate selection, considering
possible interactions, and validating correct hazard ratio construction. Without this tool, building a Cox model
would have been a fuzzy process. That’s why it was so rewarding to implement and study this method. Even if
its implementation was relatively easy, thanks in particular to the fact that martingale residuals were obtained
via the 'resmart’ option in the PHREG procedure, the real struggle was to find papers attesting to its reliability
and about the number of risk score groups to be set up. Therefore, we have chosen to focus on the first paper
published by Gronnesby and Borgan, and the papers published by May and Hosmer (May and Hosmer, 2004
117)).
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Appendix A

A.1 Inclusion CCAM and ICD-10 codes

A.1.1 Prostate surgery procedures considered for inclusion

The CCAM codes mentioned in the protocol for the inclusion of patients in the study are classiﬁecﬂ as follows:

e Anesthesia Procedures:

JGFAO015: Urethrocystoscopic resection of prostatic hypertrophy

e Surgical procedures:

JGFAO005: Transvesical adenomectomy of the prostate, by laparotomy

JGFAO006: Total vesiculoprostatectomy by laparotomy

JGFAO007: Retrovesical or transvesical removal of the utricle of the prostate by laparotomy
JGFAO009: Retropubic or transcapsular adenomectomy of the prostate, by laparotomy
JGFAO011: Total vesiculoprostatectomy, perineal approach

JGFAO014: Palliative prostate resection [Urethral recalibration|, by urethrocystoscopy

JGFAO016: Urethrocystoscopic resection or marsupialization of a prostate collection or urethral
diverticulum

JGNJ900: Rectal destruction of prostate lesions using high-intensity focused ultrasound
JGFCO001: Total vesiculoprostatectomy by coelioscopy

JGFEO023: Non-laser urethrocystoscopic resection of prostatic hypertrophy

JGFE365: Laser resection of an enlarged prostate using urethrocystoscopy

JGNEL171: Destruction of prostate hypertrophy by laser [photovaporization|, urethrocystoscopy

e Technical medical procedures:

JGJBO001: Finger-guided transrectal or transperineal evacuation of prostate collections
JGNDO002: Prostate Cryotherapy
JGHBO0O01: Transrectal or transperineal puncture-cytoaspiration of the prostate gland

JGNEO003: Destruction of prostatic hypertrophy by radiofrequency urethrocystoscopy with ultra-
sound guidance

JGNLOO01: Prostate brachytherapy with permanent insertion of iodine-125

JGNJ001: Destruction of prostate hypertrophy by microwaves [Thermotherapy of the prostate].
JGHBO002: Finger-guided transperineal prostate biopsy

JGHDO0O01: Finger-guided transrectal prostate biopsy

JGHJO001: Transrectal ultrasound-guided prostate biopsy

JGHJO002: Transperineal ultrasound-guided prostate biopsy

1 According to the official CCAM website: https://www.ameli.fr/accueil-de-1la-ccam/index.phph
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A.1.2 Prostate cancer pathologies considered for inclusion

Concerning pathologies, the ICD-10 codes used to identify the cancers concerned by the inclusion are as follows.
e Very high rank:
- C61: Malignant Prostate Tumor
e High rank:

- D07.5: Carcinoma in situ Prostate (High-grade dysplasia)
- D29.1: Benign Prostate Tumor

- D40.0: Unpredictable (or unknown evolution) Prostate Tumor
¢ Moderate rank:

- N40: Benign Prostatic Hyperplasia (or Hypertrophy)
- N42.3: Low Grade Prostatic Dysplasia

All pathologies beginning with the above codes will be considered for inclusion in the study.

A.1.3 Specific stays to be excluded

The GHM codes for stays for therapeutic purposes/iterative stays are listed below:

[CMD| 27 /[CMD| 28 (organ transplants and sessions)

e 11KO02: Renal dialysis

e 17MO05: Chemotherapy for acute leukemia

e 17MO06: Chemotherapy

e 17KO04: Irradiation

e 17KO05: Prostate brachytherapy

e 17KO06: Other brachytherapy or internal irradiation

e 17KO08: Brachytherapy for all locations, excluding iodine seeds
e 17K09: Internal irradiation

e 23MO09: Chemotherapy for non-tumor diseases

e 02C05 / 02C12: Stays for cataract surgery

A.2 Hospitalization chaining explanation scheme

Numeéro Anonyme Numéro de Séjour Time-scale (days)
Length of stay
AAAABBBBCCCCDDDDEE 21890 ¢ Delay y
 days 6 days ‘ Length of stay
AAAABBBBCCCCDDDDEE 21901 \ I

4 days

Figure A.1: Schematic diagram of hospitalization chaining

Taking the example of an artificial patient identified as AAAABBBBCCCCDDDDEE, we add the Numéro de
Séjour, 21890, to the length of stay, in this case 5 days, thus the stay ends in 21895. The following stay begins
at 21901, so we have a delay of 21901 minus 21895 days, or 6 days, meaning the patient was rehospitalized
within 30 days.
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A.3 1ICD-10 codes for comorbidity indices

For both indices, we chose to exclude the pathologies considered to be included: C61, D07.5, D29.1, D40.0, N40
and N42.3, to prevent bias in the models. We based their construction on the article published by H. Quan et
al. (H. Quan et al., 2005 |22]).

A.3.1 Charlson comorbidity index

Comorbidities Weights ICD-10

Myocardial infarction 1 121.x, [22.x, 125.2

Congestive heart failure 1 109.9.111.0, 113.0, I13.2, 125.5, 142.0, 142.5-142.9,
143.x, 150.x, P29.0

Peripheral vascular disease 1 170.x, I71.x, 173.1, 173.8, 173.9, 177.1, 179.0, 179.2,
K55.1, K55.8, K55.9, 795.8, 795.9

Cerebrovascular disease 1 G45.x, G46.x, H34.0, 160.x-169.x

Dementia 1 F00.x-F03.x, F05.1, G30.x, G31.1

Chronic pulmonary disease 1 127.8, 127.9, J40.x-J47.x, J60.x-J67.x, J68.4, J70.1,
J70.3

Rheumatic disease 1 MO05.x, M06.x, M31.5, M32.x-M34.x, M35.1, M35.3,
M36.0

Peptic ulcer disease 1 K25.x-K28.x

Mild liver disease 1 B18.x, K70.0-K70.3, K70.9, K71.3-K71.5, K71.7,
K73.x, K74.x, K76.0, K76.2-K76.4, K76.8, K76.9,
794.4

Diabetes without chronic complica- 2 E10.0, E10.1, E10.6, E10.8, E10.9, E11.0, E11.1,

tion E1l1.6, E11.8, E11.9, E12.0, E12.1, EI2.6, E12.8,

EI2.9, E13.0, E13.1, E13.6, E13.8, E13.9, E14.0,
El4.1, E14.6, E14.8, £14.9

Diabetes with chronic complication 2 E10.2-E10.5, E10.7, E11.2, E11.5, E11.7, E12.2—
E12.5, E12.7, E13.2-E13.5, E13.7, E14.2-E14.5,
E14.7

Hemiplegia or paraplegia 2 G04.1, G11.4,G80.1, G80.2, G81.x, G82.x, G&3.0—
G83.4, G83.9

Renal disease 2 112.0, I13.1, N03.2-N03.7, N05.2-N05.7, N18.x,
N19.x, N25.0, Z49.0-749.2, Z94.0, Z99.2

Any malignancy, including lym- 2 C00.x-C26.x, C30.x-C34.x, C37.x-C4lx, C43.x,

phoma and leukemia, except malig- C45.x-Ch8.x, C60.x-C76.x, C81.x—C85.x, C88.x,

nant neoplasm of skin C90.x-C97.x

Moderate or severe liver disease 3 185.0, I85.9, 186.4, 198.2, K70.4, K71.1, K72.1, K72.9,
K76.5, K76.6, K76.7

Metastatic solid tumor 6 C77.x-C80.x

AIDS/HIV 6 B20.x-B22.x, B24.x

Table A.1: ICD-10 Coding algorithms for Charlson comorbidity index
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A.3.2 Elixhauser index

Comorbidities

ICD-10

Congestive heart failure

Cardiac arrhythmias

Valvular disease
Pulmonary circulation disorders

Peripheral vascular disorders

Hypertension, uncomplicated
Hypertension, complicated
Paralysis

Other neurological disorders

Chronic pulmonary disease

Diabetes, uncomplicated

Diabetes, complicated
Hypothyroidism
Renal failure

Liver disease

Peptic ulcer disease excluding bleeding
AIDS/HIV

Lymphoma

Metastatic cancer

Solid tumor without metastasis

Rheumatoid arthritis, collagen vascular
diseases

Coagulopathy

Obesity

Weight loss

Fluid and electrolytedisorders
Blood loss anemia

Deficiency anemia

Alcohol abuse

Drug abuse
Psychoses

Depression

109.9, I11.0, I13.0, 113.2,125.5, 142.0, 142.5-142.9, I143.x, I50.x, P29.0

144.1-144.3, 145.6, 145.9, 147.x149.x, ROO.0, ROO.1, ROO.8, T82.1,
745.0, Z95.0

A52.0, 105.x-108.x, 109.1, 109.8, 134.x-139.x, Q23.0-Q23.3, Z95.2, 7Z95.4
126.x, 127.x, 128.0, 128.8,128.9

170.x, I71.x, 173.1, 173.8, 173.9, I77.1, 179.0, 179.2, K55.1, K55.8,K55.9,
795.8, 95.9

110.x
I11.x-I13.x, I15.x
G04.1, G11.4, G80.1, G80.2, G81.x, G82.x, G83.0-G83.4, G83.9

G10.x-G 13.x, G20.x-G22.x, G25.4, G25.5, G31.2, G31.8,G31.9, G32.x,
G35.x-G37.x, G40.x, G41.x, G93.1, G93.4, R47.0, R56.x

127.8, 127.9, J40.x-J47.x, J60.x-J67.x, J68.4, J70.1, J70.3

E10.0, E10.1, E10.9,E11.0, E11.1, E11.9, E12.0, E12.1, E12.9, E13.0,
E13.1, E13.9, E14.0, E14.1, E14.9

E10.2-E10.8,E11.2-E11.8, E12.2-E12.8, E13.2-E13.8, E14.2-E14.8
E00.x-E03.x, E89.0
112.0, 113.1, N18.x, NI9.x, N25.0, Z49.0-Z49.2, 794.0, 799.2

B18.x, I85.x, 186.4, 198.2, K70.x, K71.1, K71.3-K71.5, K71.7, K72.x-
K74.x, K76.0, K76.2-K76.9. 794.4

K25.7, K25.9, K26.7, K26.9, K27.7, K27.9, K28.7, K28.9
B20.x-B22.x, B24.x

(C81.x-C85.x, C88.x, C96.x, C90.0, C90.2

C77.x-C80.x

C00.x-C26.x, C30.x-C34.x, C37.x-C4l.x, C43.x, C45.x-C58.x,C60.x-
C76.x, C97.x

1.94.0, L94.1, L94.3, M05.x, M06.x, M08.x, M12.0, M12.3, M30.x,M31.0-
M31.3,M32.x-M35.x, M45.x, M46.1, M46.8, M46.9

D65-D68.x, D69.1,D69.3-D69.6
E66.x

E40.x-E46.x, R63.4, R64
E22.2, E86.x, E87.x

D50.0

D50.8, D50.9, D51.x-D53.x

F10, E52, G62.1, 142.6, K29.2, K70.0, K70.3, K70.9, T51.x, Z50.2, Z71.4,
772.1

F11.x-F16.x, F18.x, F19.x, Z71.5. Z72.2
F20.x, F22.x-F25.x, F28.x, F29.x, F30.2, F31.2, F31.5
F20.4, F31.3-F31.5, F32.x, F33.x, F34.1, F41.2, F43.2

Table A.2: ICD-10 Coding algorithms for Elixhauser index
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Appendix B

B.1 Survival analysis basis

This appendix section is designed for those with limited knowledge of survival analysis. It quickly covers the
key points of survival analysis, so that the reader has all the elements needed to understand the mathematical
tools and arguments used in Part [[I}

B.1.1 Survival data

The term survival data is used when there is a delay before an event. The analysis of this type of data is
called survival analysis and corresponds to the study of the time to occurrence of the event of interest, called
time-to-event. In our study, the event of interest was the first 30-day rehospitalization of the patient after an
admission for prostate surgery. One of the main characteristics of survival analysis is the difficulty of completely
observing all the time-to-events. For example, in our case, the event being studied is a 30-day rehospitalization;
for patients who are not rehospitalized within 30 days, the event date is not observed. This type of observation
is called right censoring.

In order to analyze the influence of covariates / factors on the survival of the patients, regression models are
used. A logistic regression model can be used to study the association between covariates and the risk of
event occurrence. In this case, the qualitative binary outcome is whether or not the event occurs within 30
days. This simple approach results in a loss of information and completely ignores the phenomenon of right
censoring. This is why, in the presence of right-censoring, or of patients lost to follow-up, we use a Cox PH model.

There are three main principles to understand for this study:

e Delay of interest: Here, the delay is based on the patient’s own date of origin (other than birth), i.e.
when he was admitted for prostate surgery. This will give us a relevant delay before the event of interest.

e The event of interest: Our study is based on the patient’s first rehospitalization (defined by the
protocol), so the definition of this event is clear and occurs at a precise point in time.

e End date: This is the date after which the patient’s information will no longer be taken into account.
Here, it is defined as 30 days.

The survival time is usually represented by a random variable T' > 0. Here, we assume that 7" is continuous on
R*. The probability distribution of this variable is characterized by the following two functions.

- Probability density function:
. Pt<T<t+dt)
t)= 1 =
7(#) 6tgr(%+ ot

We assume that the limit exists for all ¢, so the probability of occurrence of the event for d¢ small is equal
to f(t)dt.

- Distribution function:
Fit)y=P(T <t)

The most common approach is to estimate the survival function, since it represents the probability of undergoing
the event beyond ¢, i.e. of not having been rehospitalized at t. It is characterized as follows,

S(t) = P(T > t).
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B.1.2 Kaplan-Meier

The Kaplan-Meier estimator (Kaplan et Meier 1958) is the non-parametric maximum likelihood estimator
of the survival function. It is used to estimate and plot the survival function S(e) from a sample of patients
with times (= survival time) that can be right-censored. It is often the first step in carrying out the survival
analysis, as it is the simplest approach.

The estimator is defined as the fraction of observations who survived for a certain amount of time under the
same circumstances and is given by the following expression:

S(t) = ‘H (1 - Z) (B.1)

where t; is the time at which at least one event occurred, with ¢ <ty < --- <t; < --- < tg; d; is the number of
events that occurred at time t;; n; is the number of individuals known to have survived to time t;, this is the
number of observations at risk at time ¢;.

By definition we have S(0) = 0. The function S(t) is a decreasing step function, constant between two consec-
utive event times, continuous on the right, with a jump at each observed event time.

The logic behind expression (B.1)) is quite intuitive: calculating the probability of not yet having experienced
the event at t; is equivalent to calculating the probability of not having experienced the event in ¢;_; and the
probability of not having experienced it in t;, knowing that the event has not occurred until ¢;_;.

Kaplan-Meier curves are very popular in survival analysis, making it possible to assess relatively straightfor-
wardly whether one group is more at risk than another.

B.2 More about Cox assumptions

Code extracts and modifications used to check and adjust for the assumptions of a Cox model are given in this
section. The code associated with the graph for checking the age covariate is given in the first subsection. Next,
an example of modality grouping with the medical procedure (MP) covariate is given to illustrate the use of
loglogs curves and the graphical results.

B.2.1 Checking loglinearity

As explained in section we wanted to graphically represent the beta slope by interpolating with a dozen
points. We started by determining the deciles of our age variable, then created a Age Dec variable which will
be constructed by assigning one level per decile. We then built a Cox PH model on this single variable, using
the CLASS statement to obtain one coefficient per level, as follows.

PROC PHREG DATA=Patients;
CLASS Age_Dec (ref='0') / param=ref;
MODEL Delay*RH30(0)= Age_Dec;

RUN;

This displays the coefficients associated with each level, and we now need to get the midpoint values, which will
be done using MEANS procedure and the ‘median’ option, as shown opposite.

PROC MEANS DATA=Patients median;
VAR Age;
CLASS Age_Dec;

RUN;
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Then we created a table containing the estimate coefficients and their respective midpoints, so that they can
be easily represented graphically. Here we're doing it by hand, as we’re only dealing with ten or so points, but
it’s possible to extract them all using the OUTPUT statment.

DATA AgeGraph;
INPUT Age Beta;

CARDS;

55 0

59 -0.03933
62 0.02123
65 0.02688
67 0.06253
69 0.0970
72 0.13726
75 0.19942
79 0.37610
85 0.62485

RUN;
Finally, we plotted the whole using the GPLOT procedure and a few graphical options.

PROC GPLOT DATA=AgeGraph;
SYMBOL interpol=join ci=blue value=dot height=1 cv=red;
PLOT Beta*Age /frame;

RUN;

QUIT;

B.2.2 Medical procedure covariate and PH assumptions

Initially, the covariate concerning the type of medical procedure undergone at index hopsitalization was di-
vided into three categories in accordance with the CCAM classification. Upon examination, unfortunately, we
found that this categorization did not satisfy the PH assumption. We therefore chose to group together two lev-
els of this covariate, since considering another categorization was impossible given our level of clinical knowledge.
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Figure B.1: Log of negative survivor log estimated for = Figure B.2: Log of negative survivor log estimated for
3-level of MP covariate 2-level of MP covariate

As can be seen from the figure [B:I} the level corresponding to the medical anesthesia procedure does not behave
proportionally to the surgical procedure, hence we chose to group it with the closest modality, i.e. surgery.
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B.3 Cramér’s V

As mentioned in Chapter 5] some time was spent developing a macro that generates a Camér’s V matrix on the
same principle as Pearson’s correlation matrix. This macro is supplied with a heatmap whose legend is adapted
to the 0.15 tolerance threshold. The code is given below.

B.3.1 Macro implementation

Ymacro cramv_matrix(table, varlist, lablist, n, CRAMV_Matrix);
/* Matriz initialization */
DATA &CRAMV_Matrix;
ATTRIB Variable length = $10.; /# format suitable for our study */
ATTRIB Label length = $39.;
/* Retrieve information of parameter variables */
%do i=1 %to &n;
%let vi1 Y%scan(&varlist,&i.,'-");
%let 11 = Y%scan(&lablist,&i.,'-');
Variable = "&v1"; Label = "&l1"; output;

%end;
RUN;
/% Variables are crossed to obtain their Cramér's V correlation coeffictent */
%do i=1 %to &n;

%let vl = Yscan(&varlist,&i.,'-');
%do j=1 %to &n;
%let v2 = Yscan(&varlist,&j.,'-");

PROC FREQ DATA=&table noprint;
TABLES &v1*&v2 / chisq;
OUTPUT OUT = CRAMV_&j.
(keep = _CRAMV_ rename=(_CRAMV_=&v1))
chisq;
RUN;
Y%end ;
/* This gives us the column of correlation associated with &ul */
DATA CRAMV_&v1;
SET
%do j=1 Y%to &n;
CRAMV_&j .
%end ;
RUN;
/* We then merge with the prevtous columns obtained */
DATA &CRAMV_Matrix;
MERGE &CRAMV_Matrix CRAMV_&v1;
RUN;
/* Clean up the WORK library as you go along. */
PROC DATASETS lib=work noprint;
DELETE CRAMV_&v1
%do j=1 Y%to &n;
CRAMV_&j .
%end;
RUN;
QUIT;
%end;
/* Labels automatically assigned by SAS are removed for more clarity */
PROC DATASETS lib=work noprint;
MODIFY &CRAMV_Matrix;
ATTRIB _all_ label=' ';
RUN;
QUIT;
%mend cramv_matrix;
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B.3.2 Application with comorbidities

The heatpmap on Figure 5.2 presented in section [5.3] was obtained via the previous macro. As explained,
we had to repeat the classification and correlation checking process until we had 10 groups of uncorrelated
comorbidities. In order to present the use of the IML procedure and how we generated the heatmaps, the code
used and the results are shown below.

/* Macro-variables declaration */
%let varlist = Age-LOTS-ELX_GRP_14-ELX_GRP_20-ELX_GRP_19-ELX_GRP_1-ELX_GRP_6-ELX_GRP_25-ELX_
GRP_3-ELX_GRP_10-ELX_GRP_26-ELX_GRP_22;

%let lablist = Age-Length of Stay-Renal Failure-Solid Tumor without Metastasis-Metastatic Ca
ncer-Congestive Heart Failure-Hypertension Uncomplicated-Fluid andElectrolyte Disorders-Valv
ular Disease-Chronic Pulmonary Disease--Blood Loss Anemia-Coagulopathy;

%let n = 12;
%let CRAMV_Matrix = mCRAMV_ELX;
%let table = Patients;

/* Macro call */
Y%cramv_matrix(&table, &varlist, &lablist, &n, &CRAMV_Matrix);

/* Using iml to wvisualize correlations */
PROC IML;
USE &CRAMV_Matrix;
read all var "Variable" into ColNames; /# get names of wariables */
read all var "Label" into Labels; /% get labels of wvartables */
read all var (ColNames) into mCramVar; /# matriz of Cramer's V */
CLOSE &CRAMV_Matrix;
Colors = palette('BRBG', 5);
/% Heatmap */
CALL HeatmapCont(mCramVar) xvalues = Labels yvalues = Labels
colorramp = Colors range = {-0.15, 0.15} /* tolerance threshold */
title = "Cramer's V Heatmap Elixhauser Comorbidities";
QUIT;
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Figure B.3: Heatmap for Age, LOS and 10 Elixhauser comorbidity groups

We can see that none of the covariates exceed the defined correlation threshold.
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B.4 Grgnnesby and Borgan implementation

The 10 groups were clustered using two different methods. In both cases, the risk is obtained by adding
an OUTPUT statment with ’xbeta’ option to the PHREG procedure. We got martingale residuals with the
‘resmart’ option, so that we can calculate the number of expected events, as follows.

/* Generation of martingale residuals and risk score */
PROC PHREG DATA=Patients;
CLASS Age (ref='0') LOTS (ref='0') CCI (ref='0');
MODEL Delay*RH30(0) = Age LOTS CCI CCI*LOTS / rl;
OUTPUT out=GB_Model_CCI resmart=resmart xbeta=risk;
RUN;

/* Exzpected number of events calculation */
DATA GB_Model_CCI;
SET GB_Model_CCI;
ATTRIB expected length = 3.;
expected = RH30 - resmart;
RUN;

Once this has been done, we sorted the table by risk score, from the lowest to the highest, using SORT proce-
dure. G groups are then created, in two different ways. One approach is to divide our data set into 10 groups
and then consolidate the groups with the lowest number of events. The other approach is to simply divide the
data set by the number of events, as soon as we have 10% in one group, we move on to the next group. Since
these methods are very specific to the number of data events and their distribution, the code is as well, so we
don’t show this part.

Once the groups are created, the interesting part is the computation of the statistics, which is executed as
followd]

/% Calculation of the expected and observed number of events per group */
DATA GB_Model_CCI (keep = G g_observed g_expected);

SET GB_Model_CCI;

BY G;

ATTRIB g_observed g_expected length = 3.;

RETAIN g_observed O g_expected O ;

if first.G then do; g_observed = RH30; g_expected = expected; end;
else do; g_observed + RH30; g_expected + expected; end;

if last.G then output;
RUN;

/* Calculation of the Z score per group */
DATA GB_Model_CCI;;

SET GB_Model_CCI;

g_deviation = g_observed - g_expected;

z = g_deviation / sqrt(g_expected);
RUN;

In this way we recover only the observed and expected numbers per group, then we calculate a statistic per
group on the same principle as Hosmer and Lemeshow.

Note: The p-values associated with the Z-statistics were calculated using the R language.

1 The G variable corresponds to the variable indicating the assigned group, level-coded from 0 to 9.
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Appendix C

C.1 Classification: Elixhauser comorbidity groups

Learning
Covariate Label Relative Importance
ELX GRP 14 Renal Failure 1.0000 11.9015
ELX GRP 20 Solid Tumor without Metastasis 0.9353 11.1318
ELX GRP 19 Metastatic Cancer 0.7195 8.5637
ELX GRP 1  Congestive Heart Failure 0.7130 8.4861
ELX GRP 6  Hypertension Uncomplicated 0.5307 6.3162
ELX GRP 25 Fluid and Electrolyte Disorders 0.3702 4.4059
ELX GRP 3  Valvular Disease 0.3657 4.3520
ELX GRP 10 Chronic Pulmonary Disease 0.2998 3.5683
ELX GRP 26 Blood Loss Anemia 0.2642 3.1449
ELX GRP 22 Coagulopathy 0.2468 2.9371

Table C.1: Classification tree: the 10 most relevant Elixhauser comorbidity groups

C.2 Univariate analysis: Elixhauser comorbidity groups

P;‘:ﬁgﬂlon Rehospli\tIZIiza tion Rehospitalization p-value
Elixhauser comorbidity groups(®)

Renal Failure ATTT (1.77) 3662 (1.53) 1115 (3.66) <0.0001
Solid Tumor without Metastasis 9469 (3.50) 7631 (3.18) 1838 (6.03) <0.0001
Metastatic Cancer 2989 (1.11) 2286 (0.95) 703 (2.31) <0.0001
Congestive Heart Failure 5448 (2.01) 4329 (1.80) 1119 (3.67) <0.0001
Hypertension Uncomplicated 71103 (26.29) 61970 (25.82) 9133 (29.95) <0.0001
Fluid and Electrolyte Disorders 3804 (1.41) 3067 (1.28) 737 (2.42) <0.0001
Valvular Disease 3413 (1.26) 2714 (1.13) 699 (2.29) <0.0001
Chronic Pulmonary Disease 9861 (3.65) 8373 (3.49) 1488 (4.88) <0.0001
Blood Loss Anemia 1630 (0.60) 1288 (0.54) 342 (1.12) <0.0001
Coagulopathy 1599 (0.59) 1247 (0.52) 352 (1.15) <0.0001

(U The 10 most relevant comorbidity groups.

Table C.2: Elixhauser comorbidity groups associated with rehospitalization within 30 days
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C.3 PH Assumption: Elixhauser comorbidity groups

Once the study of correlations and classification has been carried out, we need to check that the covariates meet
the assumptions of a Cox model. In this case, we’re working with binary variables, so only the proportional-
hazards assumption needs to be verified. To do this, we plotted the 10 loglogs curves associated with each
group. As can be seen in the figures below, all groups met the PH assumption.
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Figure C.1: Log of negative survivor log estimated for
Renal Failure group
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Figure C.3: Log of negative survivor log estimated for

Metastasic Cancer group

53

log[-log(Survival Probability]]

T
1.5 2.0

log(Delay)

[Salid Tumor without M

Figure C.2: Log of negative survivor log estimated for
Solid Tumor without Metastasis group
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Figure C.4: Log of negative survivor log estimated for
Congestive Heart Failure group
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Figure C.5: Log of negative survivor log estimated for
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Figure C.7: Log of negative survivor log estimated for
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Figure C.9: Log of negative survivor log estimated for
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Figure C.6: Log of negative survivor log estimated for
Fluid and Electrolyte Disorders group
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Figure C.8: Log of negative survivor log estimated for
Chronic Pulmonary Disease group
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C.4 DMultivariate analysis: Interaction terms

Incorporating the interaction terms into a trained Cox model allows us to obtain hazard ratios of the crossed
terms and thus differentiate the effect of one covariate conditional on another. In this appendix subsection, we
present the results of the interactions terms (Table in both Model 1 and Model 2, since they allow us to
note something interesting in the effects of the covariates.

Model 1V Model 2
HR 95% CI p-value HR 95% CI p-value

CCI x LOS

1 x < 4 days 1.322  1.252-1.396 - -

1 x > 4 days 1.233  1.185-1.282 0.0426 - - -

> 2 x < 4 days 1.975 1.868-2.088 - -

> 2 x > 4 days 1.671 1.608-1.737  <0.0001 - - -
ELX GRP 14 x Age

1 x < 75 years - - 1.894 1.733-1.207

1 x > 75 years - - - 1.417 1.304-1.539  <0.0001
ELX GRP 20 x Age

1 x < 75 years - - 1.192 1.112-1.279

1 x > 75 years - - - 1.032 1.006-1.058  <0.0001

(WModel 1: Age, LOS, CCI, CCI x LOS, ?Model 2: Age, LOS, ELX GRP 14, ELX GRP 20, ELX GRP 19,
ELX GRP 1, ELX GRP 6, ELX GRP 25, ELX GRP 3, ELX GRP 10, ELX GRP 26, ELX GRP 22, ELX GRP
14 x Age, ELX GRP 20 x Age. The labels of the comorbidity groups are given in the table page

Table C.3: Cox’s proportional-hazards of interaction terms

As a reminder, in the results presented in section [9.2.2] a patient with a CCI of 2 or more had a significantly
higher risk of 30-day rehospitalization (76.2%). In addition, a length of stay of more than 4 days was also
associated with a higher risk of 30-day readmission (68.0%). However, here we can see that the two covariates
seem to behave slightly differently when crossed, as we can see that patients with a CCI of at least 2 and a
length of stay greater than 4 days have a slightly lower risk (67.1% versus 97.5%) than those with a CCI greater
than 2 and a short length of stay (less than or equal to 4 days).

Similar behavior was observed in the Elixhauser comorbidity groups according to patient age. Very pronounced
for patients diagnosed with renal failure, who have a higher risk (89.4% versus 41.7%) of being rehospitalized if
they are younger (< 75 years). Less pronounced for patients with solid tumor without metastasis, but with a
higher risk (19.2% versus 3.2%) for patients aged 75 years and younger.

55



C.5 Multilevel analysis: GLMMs with Elixhauser comorbidity groups

Model 5 Model 6(!)
OR 95% CI p-value OR 95% CI p-value
Age (years)
< 75 years ref ref ref ref ref ref
> 75 years 1.340 1.304-1.377  <0.0001 1.347 1.309-1.380  <0.0001
Length of stay (days)
< 4 days ref ref ref ref ref ref
> 4 days 1.708 1.665-1.753  <0.0001 1.695 1.656-1.742  <0.0001
Elixhauser comorbidity groups(®
Renal Failure 1.629 1.515-1.752  <0.0001 1.587 1.473-1.711  <0.0001
Solid Tumor without Metastasis 1.590 1.505-1.680  <0.0001 1.581 1.494-1.674  <0.0001
Metastatic Cancer 1.633 1.491-1.787  <0.0001 1.615 1.471-1.773  <0.0001
Congestive Heart Failure 1.377 1.283-1.479  <0.0001 1.376 1.282-1.476  <0.0001
Hypertension Uncomplicated 1.075 1.045-1.105  <0.0001 1.067 1.038-1.097  <0.0001
Fluid and Electrolyte Disorders  1.266 1.160-1.381  <0.0001 1.252  1.150-1.363  <0.0001
Valvular Disease 1.502 1.375-1.642  <0.0001 1.512 1.386-1.650  <0.0001
Chronic Pulmonary Disease 1.134 1.069-1.204  <0.0001 1.138 1.074-1.207  <0.0001
Blood Loss Anemia 1.525 1.346-1.729  <0.0001 1.524 1.347-1.650  <0.0001
Coagulopathy 1.499 1.456-1.538  <0.0001 1.493 1.320-1.688  <0.0001
Urban/Rural status
Urban - - - ref ref ref
Rural - - - 1.036  1.004-1.070 0.0290
French Deprivation index
< PP 0.889 0.844-0.936 < 0.0001 - - -
[Pag; Pyo 0.966 0.918-1.016 0.1830 - - -
[Pao; Poo[ ref ref ref . - -
[Pso; Psol 1.004 0.957-1.054 0.8569 - - -
> Pyo 1.053 1.004-1.105 0.0337 - - -
Private/Public status
Private ref ref ref ref ref ref
Public 1.496 1.456-1.538  <0.0001 1.489 1.449-1.529  <0.0001

(1) Adjustment without consideration of Renal Failure x Age and Solid Tumor without Metastasis x Age interaction
terms, ? The 10 most relevant groups, ) Py, Py, Pso et Pgo are the first (-1.1098), second (-0.2290), third
(0.2946), fourth (0.9379) quintiles.

Table C.4: Multivariate models predicting the risk of 30-day rehospitalization by multilevel logistic regression
(Elixhauser comorbidity groups version)
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Appendix D

D.1 Interaction between age and logarithm of time

The 2-level categorization defined for age (< 75 years or > 75 years, see section seemed to be a very
good choice. We wanted to confirm the visuals with a statistical test, so we introduced an interaction between
time and this form of age covariate. Following the same principle as in the previous section we divided
the variable age into two groups. The first variable we created, Agel, corresponds to the continuous age of
patients aged 75 or under, and was set to 0 for those over 75. The second variable, Age2, corresponds to the
continuous age of patients over 75, and was set to 0 for those aged 75 or under. If the coefficients are not equal,
this would imply a change in behavior over time, and therefore a violation of the PH hypothesis.

PROC PHREG DATA=Patients;
MODEL Delay*RH30(0) = Agel Age2 AgelT Age2T;
AgelT = Agelxlog(Delay) ;
Age2T = Age2xlog(Delay) ;
TEST AgelT = Age2T;
RUN;

Linear hypothesis results
Label Wald Chi-2 Pr > Chi-2
AgelT = Age2T Test 1 1.4458 0.2292

Table D.1: PHREG output for interaction between age and logarithm of time

The interaction is no longer being significant, with a p-value equal to 0.2292 for the test of equality of coeffi-
cients. Thus we can consider this a solid choice.
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